Introduction: The pupillary light reflex (PLR) is the constriction of the pupil in response to light. The PLR in response to a pulse of light follows a complex waveform that can be characterized by several parameters. It is a sensitive marker of acute neurological deterioration, but is also sensitive to the background illumination in the environment in which it is measured. To detect a pathological change in the PLR, it is therefore necessary to separate the contributions of neuro-ophthalmic factors from ambient illumination. Illumination varies over several orders of magnitude and is difficult to control due to diurnal, seasonal, and location variations.

Methods And Results: We assessed the sensitivity of seven PLR parameters to differences in ambient light, using a smartphone-based pupillometer (AI Pupillometer, Solvemed Inc.). Nine subjects underwent 345 measurements in ambient conditions ranging from complete darkness (<5 lx) to bright lighting (≲10,000 lx). Lighting most strongly affected the initial pupil size, constriction amplitude, and velocity. Nonlinear models were fitted to find the correction function that maximally stabilized PLR parameters across different ambient light levels. Next, we demonstrated that the lighting-corrected parameters still discriminated reactive from unreactive pupils. Ten patients underwent PLR testing in an ophthalmology outpatient clinic setting following the administration of tropicamide eye drops, which rendered the pupils unreactive. The parameters corrected for lighting were combined as predictors in a machine learning model to produce a scalar value, the Pupil Reactivity (PuRe) score, which quantifies Pupil Reactivity on a scale 0-5 (0, non-reactive pupil; 0-3, abnormal/"sluggish" response; 3-5, normal/brisk response). The score discriminated unreactive pupils with 100% accuracy and was stable under changes in ambient illumination across four orders of magnitude.

Discussion: This is the first time that a correction method has been proposed to effectively mitigate the confounding influence of ambient light on PLR measurements, which could improve the reliability of pupillometric parameters both in pre-hospital and inpatient care settings. In particular, the PuRe score offers a robust measure of Pupil Reactivity directly applicable to clinical practice. Importantly, the formulae behind the score are openly available for the benefit of the clinical research community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11037402PMC
http://dx.doi.org/10.3389/fneur.2024.1363190DOI Listing

Publication Analysis

Top Keywords

machine learning
4
learning approach
4
approach ambient-light-corrected
4
ambient-light-corrected parameters
4
parameters pupil
4
pupil reactivity
4
reactivity pure
4
pure score
4
score smartphone-based
4
smartphone-based pupillometry
4

Similar Publications

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!