Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040251 | PMC |
http://dx.doi.org/10.1098/rspb.2023.2626 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!