Autocatalysis has been recognized to be involved in the emergence of life and intrinsic to biomolecular replication. Recently, an efficient template autocatalysis driven by solvent-free crystallization has been reported. Herein, we unveil the role of intermolecular hydrogen bonds formed by amides in crystallization-driven template autocatalysis (CDTA), which involves the autocatalytic activity, template selectivity, and thermal responsiveness. We found that the thermal-induced cis-trans isomerization of amides possibly affects the H-bonding-mediated template ability of products for autocatalytic transformation. As a result, CDTA can be reversibly inhibited and activated by tuning the reaction temperatures. Our work sheds light on the significance of noncovalent H-bonding interactions in artificial self-replicators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202404838 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!