Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Our previous study suggests that tumor CD8+ T cells and macrophages (defined as CD68+ cells) infiltration underwent dynamic and heterogeneous changes during concurrent chemoradiotherapy (CCRT) in cervical cancer patients, which correlated with their short-term tumor response. This study aims to develop a CT image-based radiomics signature for such dynamic changes.
Methods: Thirty cervical squamous cell carcinoma patients, who were treated with CCRT followed by brachytherapy, were included in this study. Pre-therapeutic CT images were acquired. And tumor biopsies with immunohistochemistry at primary sites were performed at baseline (0 fraction (F)) and immediately after 10F. Radiomics features were extracted from the region of interest (ROI) of CT images using Matlab. The LASSO regression model with ten-fold cross-validation was utilized to select features and construct an immunomarker classifier and a radiomics signature. Their performance was evaluated by the area under the curve (AUC).
Results: The changes of tumor-infiltrating CD8+T cells and macrophages after 10F radiotherapy as compared to those at baseline were used to generate the immunomarker classifier (AUC= 0.842, 95% CI:0.680-1.000). Additionally, a radiomics signature was developed using 4 key radiomics features to predict the immunomarker classifier (AUC=0.875, 95% CI:0.753-0.997). The patients stratified based on this signature exhibited significant differences in treatment response (p = 0.004).
Conclusion: The radiomics signature could be used as a potential predictor for the CCRT-induced dynamic alterations of CD8+ T cells and macrophages, which may provide a less invasive approach to appraise tumor immune status during CCRT in cervical cancer compared to tissue biopsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036574 | PMC |
http://dx.doi.org/10.1186/s40644-024-00680-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!