Objective: Proliferative nodular formation represents a characteristic pathological feature of benign prostatic hyperplasia (BPH) and serves as the primary cause for prostate volume enlargement and consequent lower urinary tract symptoms (LUTS). Its specific mechanism is largely unknown, although several cellular processes have been reported to be involved in BPH initiation and development and highlighted the crucial role of epithelial cells in proliferative nodular formation. However, the technological limitations hinder the in vivo investigation of BPH patients.
Methods: The robust cell type decomposition (RCTD) method was employed to integrate spatial transcriptomics and single cell RNA sequencing profiles, enabling the elucidation of epithelial cell alterations during nodular formation. Immunofluorescent and immunohistochemical staining was performed for verification.
Results: The alterations of epithelial cells during the formation of nodules in BPH was observed, and a distinct subgroup of basal epithelial (BE) cells, referred to as BE5, was identified to play a crucial role in driving this progression through the hypoxia-induced epithelial-mesenchymal transition (EMT) signaling pathway. BE5 served as both the initiating cell during nodular formation and the transitional cell during the transformation from luminal epithelial (LE) to BE cells. A distinguishing characteristic of the BE5 cell subgroup in patients with BPH was its heightened hypoxia and upregulated expression of FOS. Histological verification results confirmed a significant association between c-Fos expression and key biological processes such as hypoxia and cell proliferation, as well as the close relationship between hypoxia and EMT in BPH tissues. Furthermore, a strong link between c-Fos expression and the progression of BPH was also been validated. Additionally, notable functional differences were observed in glandular and stromal nodules regarding BE5 cells, with BE5 in glandular nodules exhibiting enhanced capacities for EMT and cell proliferation characterized by club-like cell markers.
Conclusions: This study elucidated the comprehensive landscape of epithelial cells during in vivo nodular formation in patients, thereby offering novel insights into the initiation and progression of BPH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036735 | PMC |
http://dx.doi.org/10.1186/s12967-024-05212-9 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211.
Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFGlycoconj J
January 2025
Department of Radiology, First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, China.
In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!