Background: PIN-FORMED genes (PINs) are crucial in plant development as they determine the directionality of auxin flow. They are present in almost all land plants and even in green algae. However, their role in fern development has not yet been determined. This study aims to investigate the function of CrPINMa in the quasi-model water fern Ceratopteris richardii.
Results: CrPINMa possessed a long central hydrophilic loop and characteristic motifs within it, which indicated that it belonged to the canonical rather than the non-canonical PINs. CrPINMa was positioned in the lineage leading to Arabidopsis PIN6 but not that to its PIN1, and it had undergone numerous gene duplications. CRISPR/Cas9 genome editing had been performed in ferns for the first time, producing diverse mutations including local frameshifts for CrPINMa. Plants possessing disrupted CrPINMa exhibited retarded leaf emergence and reduced leaf size though they could survive and reproduce at the same time. CrPINMa transcripts were distributed in the shoot apical meristem, leaf primordia and their vasculature. Finally, CrPINMa proteins were localized to the plasma membrane rather than other cell parts.
Conclusions: CRISPR/Cas9 genome editing is feasible in ferns, and that PINs can play a role in fern leaf development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040788 | PMC |
http://dx.doi.org/10.1186/s12870-024-05009-4 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFPlant Cell
January 2025
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
Tracheary elements (TEs) are vital in the transport of various substances and contribute to plant growth. The differentiation of TEs is complex and regulated by a variety of microRNAs (miRNAs). However, the dynamic changes in miRNAs during each stage of TE differentiation remain unclear, and the miRNA regulatory network is not yet complete.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Textiles, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia.
A smart viscose fabric with temperature and pH responsiveness and proactive antibacterial and UV protection was developed. PNCS (poly-(N-isopropylakrylamide)/chitosan) hydrogel was used as the carrier of silver nanoparticles (Ag NPs), synthesised in an environmentally friendly manner using AgNO and a sumac leaf extract. PNCS hydrogel and Ag NPs were applied to the viscose fabric by either in situ synthesis of Ag NPs on the surface of viscose fibres previously modified with PNCS hydrogel, or by the direct immobilisation of Ag NPs by the dehydration/hydration of the PNCS hydrogel with the nanodispersion of Ag NPs in the sumac leaf extract and subsequent application to the viscose fibres.
View Article and Find Full Text PDFNat Prod Res
January 2025
Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China.
The leaves of (Batal) Iljinsk., a plant native to China that has long been used in traditional Chinese medicine to treat diabetes. It remains to be determined what chemical constituents are responsible for this effect.
View Article and Find Full Text PDFCureus
December 2024
Department of Dermatology, Asahikawa Medical University, Asahikawa, JPN.
Eczematous paradoxical reactions are commonly associated with anti-interleukin-17A (anti-IL-17A) antibodies. However, IL-23 p19 inhibitors can also cause similar cutaneous manifestations. We present a case of a 77-year-old Japanese woman with palmoplantar pustulosis (PPP), who developed eczematous lesions on her face, neck, and dorsum of the hands 10 weeks after initiating guselkumab treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!