Detached plasma formation is a way to reduce the heat load on the wall in magnetic fusion devices. This study proposes a novel analysis technique consisting of the conditional averaging, sliding window, and tomography to reveal the spatiotemporal behavior of the rotating radial ejection event of detached plasma, which further contributes to local heat load reduction. The used equipment is a high-speed camera and an electrostatic probe located at the periphery of the linear plasma device NAGDIS-II. By applying this method, four-dimensional (4D) behavior of the emission structure along time (1D) and space perpendicular and parallel to the magnetic field (3D) was clarified; a rotating distorted structure appears as a precursor, which is then scraped and transported radially and axially. The proposed method is widely applicable to short-term rigid-body rotating structures, especially in linear plasmas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554665PMC
http://dx.doi.org/10.1038/s41598-024-59182-5DOI Listing

Publication Analysis

Top Keywords

detached plasma
12
conditional averaging
8
heat load
8
plasma
5
four-dimensional conditional
4
averaging tomography
4
rotating
4
tomography rotating
4
rotating plasma
4
plasma ejection
4

Similar Publications

Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

J Lipid Res

January 2025

Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

Plasma decomposition of ferrocene.

J Chem Phys

January 2025

Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.

Ferrocene [Fe(C5H5)2 or FeCp2] is a well-known precursor molecule for iron in vapor deposition of iron containing films by, e.g., chemical vapor deposition (CVD) processes.

View Article and Find Full Text PDF

Protective Effects of Heat-Killed Lactobacilli against Plasma-Induced Neurotoxicity in Multiple Sclerosis.

Probiotics Antimicrob Proteins

January 2025

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.

View Article and Find Full Text PDF

Purpose: The management of idiopathic macular holes (iMH) has evolved over time with various modifications in surgical approach. The study aimed to survey the surgeons' preferences in the management of iMH in current times.

Design: Cross-sectional descriptive survey.

View Article and Find Full Text PDF

In this work, the atmospheric pressure air gliding arc discharge has been produced for the generation of plasma-activated water (PAW) and studying its effect on the chlorophyll retention and greenness of Tejpat () leaves. The discharge is characterized via electrical and optical methods to calculate the electron excitation temperature (1.38 eV) and density ( cm) of the plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!