Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Electrocardiograms (ECG) are an important source of information on human heart health and are widely used to detect different types of arrhythmias.
Objective: With the advancement of deep learning, end-to-end ECG classification models based on neural networks have been developed. However, deeper network layers lead to gradient vanishing. Moreover, different channels and periods of an ECG signal hold varying significance for identifying different types of ECG abnormalities.
Methods: To solve these two problems, an ECG classification method based on a residual attention neural network is proposed in this paper. The residual network (ResNet) is used to solve the gradient vanishing problem. Moreover, it has fewer model parameters, and its structure is simpler. An attention mechanism is added to focus on key information, integrate channel features, and improve voting methods to alleviate the problem of data imbalance.
Results: Experiments and verifications are conducted using the PhysioNet/CinC Challenge 2017 dataset. The average F1 value is 0.817, which is 0.064 higher than that for the ResNet model. Compared with the mainstream methods, the performance is excellent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13239-024-00730-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!