Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Clear cell renal cell carcinoma is the most common type of kidney cancer, but the prediction of prognosis remains a challenge.
Methods: We collected whole-slide histopathological images, corresponding clinical and genetic information from the The Cancer Imaging Archive and The Cancer Genome Atlas databases and randomly divided patients into training (n = 197) and validation (n = 84) cohorts. After feature extraction by CellProfiler, we used 2 different machine learning techniques (Least Absolute Shrinkage and Selector Operation-regularized Cox and Support Vector Machine-Recursive Feature Elimination) and weighted gene co-expression network analysis to select prognosis-related image features and genes, respectively. These features and genes were integrated into a joint model using random forest and used to create a nomogram that combines other predictive indicators.
Results: A total of 4 overlapped features were identified, represented by the computed histopathological risk score in the random forest model, and showed predictive value for overall survival (test set: 1-year area under the curves (AUC) = 0.726, 3-year AUC = 0.727, and 5-year AUC = 0.764). The histopathological-genetic risk score (HGRS) integrating the genetic information computed performed better than the model that used image features only (test set: 1-year AUC = 0.682, 3-year AUC = 0.734, and 5-year AUC = 0.78). The nomogram (gender, stage, and HGRS) achieved the highest net benefit according to decision curve analysis compared to HGRS or clinical model.
Conclusion: This study developed a histopathological-genetic-related nomogram by combining histopathological features and clinical predictors, providing a more comprehensive prognostic assessment for clear cell renal cell carcinoma patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.urolonc.2024.03.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!