Genotoxic DNA damaging agents are the choice of chemicals for studying DNA repair pathways and the associated genome instability. One such preferred laboratory chemical is methyl methanesulfonate (MMS). MMS, an SN2-type alkylating agent known for its ability to alkylate adenine and guanine bases, causes strand breakage. Exploring the outcomes of MMS interaction with DNA and the associated cytotoxicity will pave the way to decipher how the cell confronts methylation-associated stress. This study focuses on an in-depth understanding of the structural instability, induced antigenicity on the DNA molecule, cross-reactive anti-DNA antibodies, and cytotoxic potential of MMS in peripheral lymphocytes and cancer cell lines. The findings are decisive in identifying the hazardous nature of MMS to alter the intricacies of DNA and morphology of the cell. Structural alterations were assessed through UV-Vis, fluorescence, liquid chromatography, and mass spectroscopy (LCMS). The thermal instability of DNA was analyzed using duplex melting temperature profiles. Scanning and transmission electron microscopy revealed gross topographical and morphological changes. MMS-modified DNA exhibited increased antigenicity in animal subjects. MMS was quite toxic for the cancer cell lines (HCT116, A549, and HeLa). This research will offer insights into the potential role of MMS in inflammatory carcinogenesis and its progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.131743 | DOI Listing |
Microsc Res Tech
January 2025
Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkey.
Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage.
View Article and Find Full Text PDFArch Microbiol
December 2024
Department of Life Sciences, Presidency University, Kolkata, 700073, India.
In spite of being dispensable for catalysis, Dpb2, the second largest subunit of leading strand DNA polymerase (Polymerase ε) is essential for cell survival in budding yeast. Dpb2 physically connects polymerase epsilon with the replicative helicase (CMG,Cdc45-Mcm-GINS) by interacting with its Psf1 subunit. Dpb2-Psf1 interaction has been shown to be critical for incorporating polymerase ε into the replisome.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 06560, Ankara, Türkiye.
Endogenous and exogenous factors cause DNA damage through chemical changes in the genomic DNA structure. The comet assay is a versatile, rapid, and sensitive method for evaluating DNA integrity at the individual cell level. It is used in human biomonitoring studies, the identification of DNA lesions, and the measurement of DNA repair capacity.
View Article and Find Full Text PDFmBio
January 2025
Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France.
Homologous recombination (HR) is a universally conserved mechanism of DNA strand exchange between homologous sequences, driven in bacteria by the RecA recombinase. HR is key for the maintenance of bacterial genomes via replication fork restart and DNA repair, as well as for their plasticity via the widespread mechanism of natural transformation. Transformation involves the capture and internalization of exogenous DNA in the form of single strands, followed by HR-mediated chromosomal integration.
View Article and Find Full Text PDFJ Pharm Sci
November 2024
Xiphora Biopharma Consulting, 9 Richmond Apartments, Redland Court Road, Bristol BS6 7BG, UK. Electronic address:
Whilst an alcohol can be forced to react with a sulfonic acid, this reaction produces minimal ester conversion even under extreme conditions (anhydrous, very low pH) that bear no resemblance to the mild synthetic procedures typically used for the formation of sulfonate salts of basic drugs. The latter involve the addition of a molar equivalent of pharma-grade sulfonic acid to the base form of a drug substance (pKa ≥3.5), dissolved or suspended in an alcohol solvent, normally ethanol (pKa -2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!