Elevated intracellular Ca functions downstream of mitodysfunction to induce Wallerian-like degeneration and necroptosis in organophosphorus-induced delayed neuropathy.

Toxicology

Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China. Electronic address:

Published: May 2024

Neurotoxic organophosphorus compounds can induce a type of delayed neuropathy in humans and sensitive animals, known as organophosphorus-induced delayed neuropathy (OPIDN). OPIDN is characterized by axonal degeneration akin to Wallerian-like degeneration, which is thought to be caused by increased intra-axonal Ca concentrations. This study was designed to investigate that deregulated cytosolic Ca may function downstream of mitodysfunction in activating Wallerian-like degeneration and necroptosis in OPIDN. Adult hens were administrated a single dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP), and then sacrificed at 1 day, 5 day, 10 day and 21 day post-exposure, respectively. Sciatic nerves and spinal cords were examined for pathological changes and proteins expression related to Wallerian-like degeneration and necroptosis. In vitro experiments using differentiated neuro-2a (N2a) cells were conducted to investigate the relationship among mitochondrial dysfunction, Ca influx, axonal degeneration, and necroptosis. The cells were co-administered with the Ca-chelator BAPTA-AM, the TRPA1 channel inhibitor HC030031, the RIPK1 inhibitor Necrostatin-1, and the mitochondrial-targeted antioxidant MitoQ along with TOCP. Results demonstrated an increase in cytosolic calcium concentration and key proteins associated with Wallerian degeneration and necroptosis in both in vivo and in vitro models after TOCP exposure. Moreover, co-administration with BATPA-AM or HC030031 significantly attenuated the loss of NMNAT2 and STMN2 in N2a cells, as well as the upregulation of SARM1, RIPK1 and p-MLKL. In contrast, Necrostatin-1 treatment only inhibited the TOCP-induced elevation of p-MLKL. Notably, pharmacological protection of mitochondrial function with MitoQ effectively alleviated the increase in intracellular Ca following TOCP and mitigated axonal degeneration and necroptosis in N2a cells, supporting mitochondrial dysfunction as an upstream event of the intracellular Ca imbalance and neuronal damage in OPIDN. These findings suggest that mitochondrial dysfunction post-TOCP intoxication leads to an elevated intracellular Ca concentration, which plays a pivotal role in the initiation and development of OPIDN through inducing SARM1-mediated axonal degeneration and activating the necroptotic signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2024.153812DOI Listing

Publication Analysis

Top Keywords

degeneration necroptosis
24
wallerian-like degeneration
16
axonal degeneration
16
delayed neuropathy
12
n2a cells
12
mitochondrial dysfunction
12
degeneration
9
elevated intracellular
8
downstream mitodysfunction
8
organophosphorus-induced delayed
8

Similar Publications

Programmed neurite degeneration in human central nervous system neurons driven by changes in NAD metabolism.

Cell Death Dis

January 2025

In vitro Toxicology and Biomedicine, Dept. inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, 78457, Konstanz, Germany.

Neurite degeneration (ND) precedes cell death in many neurodegenerative diseases. However, it remains unclear how this compartmentalized cell death process is orchestrated in the central nervous system (CNS). The establishment of a CNS axotomy model (using modified 3D LUHMES cultures) allowed us to study metabolic control of ND in human midbrain-derived neurons without the use of toxicants or other direct disturbance of cellular metabolism.

View Article and Find Full Text PDF

Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia-reperfusion injury.

Neural Regen Res

January 2025

Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.

Ischemia-reperfusion injury is a common pathophysiological mechanism in retinal degeneration. PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis, apoptosis, and necroptosis. Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia-reperfusion injury.

View Article and Find Full Text PDF

Necroptosis is a critical process in intervertebral disc degeneration (IDD). This research is aimed at identifying key genes regulating necroptosis in IDD to provide a theoretical basis for early diagnosis and treatment. Transcriptome data from patients with IDD and normal samples were obtained from the GSE34095 and GSE124272 datasets of the Gene Expression Omnibus (GEO) public database.

View Article and Find Full Text PDF

Low back pain caused by intervertebral disc degeneration (IDD) has emerged as a significant global public health concern, with far-reaching consequences for patients' quality of life and healthcare systems. Although previous research have revealed that the mechanisms of intervertebral disc cell apoptosis, pyroptosis and necroptosis can aggravate IDD damage by mediating inflammation and promoting extracellular matrix degradation, but they cannot explain the connection between different cell death mechanisms and ion metabolism disorders. The latest study shows that cell death mechanisms such as cellular senescence, ferroptosis, and cuproptosis, and PANopotosis have similar roles in the progression of intervertebral disc degeneration, but not exactly the same damage mechanism.

View Article and Find Full Text PDF

Machine learning-based analysis of programmed cell death types and key genes in intervertebral disc degeneration.

Apoptosis

December 2024

Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.

Intervertebral disc degeneration (IVDD) is intricately associated with various forms of programmed cell death (PCD). Identifying key PCD types and associated genes is essential for understanding the molecular mechanisms underlying IVDD and discovering potential therapeutic targets. This study aimed to elucidate core PCD types, related genes, and potential drug interactions in IVDD using comprehensive bioinformatic and experimental approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!