Ferroic orders and their associated structural phase transitions are paramount in the understanding of a multitude of unconventional condensed matter phenomena. On this note, our investigation focuses on the polymorphic ferroelectric (FE) phase transitions of Copper(II) hydroxide, Cu(OH), considering an antiferromagnetic ground state. By employing the first-principles studies and group theory analysis, we have provided a systematic theoretical investigation of vibrational properties in the hypotheticalhigh-symmetry phase to unveil the symmetry-allowed ferroic phases. We identified a non-polar to polar (Cmc21) phase transition, in which the displacive transformation is primarily responsible for the phase change induced by twoB1u(i.e.Γ2-) phonon modes within the centrosymmetric phase. We also observed the existence of two polar structures with the same space group and different degrees of polarization (i.e.= 3.06C·cmand= 42.41C·cm), emerging from the high symmetry non-polar structure. According to the structural analysis the FE order, of a geometric nature, is driven by theΓ2-mode in which the O- and H-sites displacements lead the polar distortion with a minor contribution from the Cu-sites. Interestingly, the 3:CuJahn-Teller distortion coupled with the orientational shifts of O-H atoms enhances the polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad4224DOI Listing

Publication Analysis

Top Keywords

phase transitions
8
phase
6
ferroelectric polymorphic
4
polymorphic phenomena
4
phenomena layered
4
layered antiferromagnet
4
antiferromagnet cuoh
4
cuoh ferroic
4
ferroic orders
4
orders associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!