Europium complexes exhibiting red luminescence were prepared by employing β-diketone as main ligand and 1,10-phenanthroline as an additional ligand. Various methods, including H NMR, IR spectroscopy and analysis of optical band gap were employed to examine these complexes. The luminescent photophysical properties were investigated using PL spectroscopy and theoretical calculations were conducted to explore radiative transitions probabilities and Judd-Ofelt (J-O) parameters for transitions of type D → F. J-O parameters were determined using the JOES computer program and results were in good agreement with the outcomes obtained experimentally. The luminescence analysis results have verified the vibrant, single-color red emission of the prepared complexes. The band gap of ternary europium complexes, determined optically, electronically, and theoretically, falls within the range of 3-4 eV. This similarity indicates that these complexes are potentially suitable as semiconductor materials. The results from absorption, electrochemical and photophysical analyses indicate the potential use of synthesized complexes in lighting and display applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124307DOI Listing

Publication Analysis

Top Keywords

display applications
8
europium complexes
8
band gap
8
j-o parameters
8
complexes
6
computational optoelectronic
4
optoelectronic investigations
4
investigations red-emissive
4
red-emissive europium
4
europium iii
4

Similar Publications

The application of biological therapy and glucocorticoids in Auto-immune diseases (AID) patients will cause immunocompromised host (ICH) prone to infection. And monocytes play a key role in both innate and adaptive immune responses. We aimed to investigate the changes of circulating monocyte subsets in AID or AID-ICH patients with pulmonary infection.

View Article and Find Full Text PDF

Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia, mostly resulting from impaired insulin production and diminished glucose metabolism regulation. Qiwei Baizhu San (QWBZS) is a classic formula used in traditional Chinese medicine for the treatment of T2DM. A comprehensive analysis of the efficacy and safety of QWBZS in the treatment of T2DM is essential.

View Article and Find Full Text PDF

Background: Anticoagulants are the primary means for the treatment and prevention of venous thromboembolism (VTE), but their clinical standardized application still remains controversial. The present study intends to comprehensively compare the efficacy and safety of various anticoagulants in VTE.

Methods: Medline, Embase, and Cochrane Library from their inception up to August 2023 were searched to compare the efficacy and safety of various anticoagulants in VTE.

View Article and Find Full Text PDF

The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!