Three hundred one-day-old Avian 48 broiler chicks were used to investigate the effect of lignocellulose (LC) and probiotic supplementation in broiler chicken diet on growth performance, digestive health, litter quality, and some gene expression. Experimental treatments consisted of 3 × 2 factorial arrangements with 3 levels of LC without or with probiotics to formulate 6 experimental groups. Groups 1, 2, and 3 were fed on the basal diet with dietary LC inclusion at 0, 0.5, and 1.0%, respectively, while groups 4, 5, and 6 were fed on the previously mentioned design with Bacillus subtilis at 100 gm/ton. The results revealed that Dietary LC inclusion nonsignificantly (P ≥ 0.05) reduced body weight (BW), body weight gain (BWG), and feed intake. Meanwhile, B. subtilis supplementation improved BW and BWG and enhanced the effect of LC on the broilers' weight. The group fed a 0.5% LC and B. subtilis-supplemented diet recorded the best (P ≥ 0.05) BW, BWG, FCR, PER, EEU, and PI. LC and or B. subtilis supplementation improved carcass traits of broiler (higher dressing% with lower abdominal fat% compared with a control group), intestinal health, and absorptive capacity. LC potentiates the effect of B. subtilis supplementation in broilers' diet in modulating intestinal microflora (lowered (P ≥ 0.05) cecal Coliform and increased Lactobacillus counts), the highest Coliform counts were recorded in group fed 0.5 or 1.0% LC plus B. subtilis. LC at 0.5 or 1.0% and or B. subtilis supplementation reduced (P ≥ 0.05) litter moisture% at the 2nd, 4th, and 6th wk compared to the control group. Dietary inclusion of LC and or B. subtilis supplementation significantly (P < 0.001) up-regulated hepatic growth-related genes (growth hormone receptor (GHR) and insulin growth factor1 (IGF-1)) and antioxidant-related genes (superoxide dismutase 1 (SOD1), glutathione peroxidase (GPX1) and uncoupling protein (UCP) and down-regulated (P < 0.001) splenic toll-like receptor 4 (TLRP) gene expression while had no significant effect on splenic interleukin 8 (IL8) and tumor necrosis factor (TNF) with the best-obtained results with 1.0% followed by 0.5% LC with B. subtilis supplementation. We concluded that dietary LC and/or B. subtilis supplementation positively affected the growth performance, feed efficiency, carcass quality, intestinal absorptive capacity and health, litter quality and growth, and antioxidant and immune-related gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11063516 | PMC |
http://dx.doi.org/10.1016/j.psj.2024.103735 | DOI Listing |
Anim Microbiome
January 2025
China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano.
View Article and Find Full Text PDFPoult Sci
December 2024
Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China. Electronic address:
The objective of this study was to preliminarily explore the effects of Calsporin® (Bacillus subtilis C-3102) on the growth performance, intestinal morphology, apparent digestibility, and cecal microbiota of geese. A total of 144 Sanhua geese, aged 35 days, were randomly divided into three groups: a control group, a group receiving a basal diet supplemented with 30 ppm Bacillus subtilis (B. subtilis), and a group receiving a basal diet supplemented with 60 ppm B.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China. Electronic address:
World J Microbiol Biotechnol
December 2024
Hainan Institute, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
Maternal nutritional supplementation has a profound effect on the growth and development of offspring. FAM is produced by co-cultivation of Lactobacillus acidophilus and Bacillus subtilis and has been demonstrated to potentially alleviate diarrhea, improve growth performance and the intestinal barrier integrity of weaned piglets. This study aimed to explore how maternal FAM improves the reproductive performance through mother-infant microbiota, colostrum and placenta.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
We conducted two experiments to evaluate the effect of direct-fed microbials () on fermentation parameters and nutrient degradability with two different approaches using rumen fluid from lactating Holstein dairy cows. In Exp. 1, three doses of a DFM containing and () at doses of 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!