In vitro simulated saliva, gastric, and intestinal digestion followed by faecal fermentation reveals a potential modulatory activity of Epimedium on human gut microbiota.

J Pharm Biomed Anal

Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada. Electronic address:

Published: August 2024

Herba Epimedii, known for its rich array of bioactive ingredients and widespread use in ethnopharmacological practices, still lacks a comprehensive understanding of its gastrointestinal biotransformation. In this study, we qualitatively explored the dynamic changes in Epimedium sagittatum components during in vitro simulated digestions, with a quantitative focus on its five major flavonoids. Notably, significant metabolism of E. sagittatum constituents occurred in the simulated small intestinal fluid and colonic fermentation stages, yielding various low molecular weight metabolites. Flavonoids like kaempferol glycosides were fully metabolized in the simulated intestinal fluid, while hyperoside digestion occurred during simulated colon digestion. Colonic fermentation led to the production of two known bioactive isoflavones, genistein, and daidzein. The content and bioaccessibility of the five major epimedium flavonoids-icariin, epimedin A, epimedin B, epimedin C, and baohuoside I-significantly increased after intestinal digestion. During colon fermentation, these components gradually decreased but remained incompletely metabolized after 72 h. Faecal samples after E. sagittatum fermentation exhibited shift towards dominance by Lactobacillus (Firmicutes), Bifidobacterium (Actinobacteria), Streptococcus (Firmicutes), and Dialister (Firmicutes). These findings enhance our comprehension of diverse stages of Herba Epimedii constituents in the gut, suggesting that the primary constituents become bioaccessible in the colon, where new bioactive compounds may emerge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116151DOI Listing

Publication Analysis

Top Keywords

vitro simulated
8
intestinal digestion
8
herba epimedii
8
occurred simulated
8
intestinal fluid
8
colonic fermentation
8
epimedin epimedin
8
fermentation
5
simulated saliva
4
saliva gastric
4

Similar Publications

This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.

View Article and Find Full Text PDF

Exploring mimosamycin as a Janus kinase 2 inhibitor: A combined computational and experimental investigation.

Comput Biol Chem

January 2025

Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play a crucial role in signal transduction pathways. JAK2 has been implicated in the pathogenesis of leukemia, making it a promising target for research aimed at reducing the risk of this disease. This study examined the potential of mimosamycin as a JAK2 inhibitor using both in vitro and in silico approaches.

View Article and Find Full Text PDF

Ligand-based cheminformatics and free energy-inspired molecular simulations for prioritizing and optimizing G-protein coupled receptor kinase-6 (GRK6) inhibitors in multiple myeloma treatment.

Comput Biol Chem

January 2025

Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:

Multiple myeloma (MM) is the second most frequently diagnosed hematological malignancy, presenting limited treatment options with no curative potential and significant drug resistance. Recent studies involving genetic knockdown established the crucial role of GRK6 in upholding the viability of MM cells, emphasizing the need to identify potential inhibitors. Computational exploration of GRK6 inhibitors has not been attempted previously.

View Article and Find Full Text PDF

Analysis of potential human accumulation differences and mechanisms of environmental new flame retardants: Based on in vitro experiments and theoretical calculations.

Sci Total Environ

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.

View Article and Find Full Text PDF

Anti-colorectal cancer actions of Glycyrrhiza uralensis Fisch. and its underlying mechanism via HPLC integration and network pharmacological approaches.

Phytomedicine

January 2025

College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense E-32004, Spain. Electronic address:

Background: The therapeutic and prognostic outcomes for colorectal cancer (CRC) remain unsatisfactory. Among multiple reported bioactive functionalities of Glycyrrhiza uralensis Fisch. one vital recently reported activity is its therapeutic role against numerous cancers but limited information is available related to its underlying key mechanisms and therapeutically active ingredients, especially against CRC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!