Synthesis of N-H Aziridines from Unactivated Olefins Using Hydroxylamine--Sulfonic Acids as Aminating Agent.

J Org Chem

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Published: May 2024

Herein, we presented a practical methodology for the intermolecular aziridination of alkenes, using HOSA as the aminating agent, alongside pyridine or piperidine as the base, within HFIP solvent system. Notably, this approach showcases excellent reactivity, especially with nonactivated alkenes, and facilitates the transformation of various alkenes substrates, including mono-, di-, tri, and tetra-substituted alkenes, into aziridines with moderate to excellent yield. This method presents a promising avenue for synthesizing aziridines from a wide range of alkenes, featuring the benefits of straightforward operation, mild reaction conditions, extensive substrate compatibility, and scalability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c00253DOI Listing

Publication Analysis

Top Keywords

aminating agent
8
alkenes
5
synthesis n-h
4
n-h aziridines
4
aziridines unactivated
4
unactivated olefins
4
olefins hydroxylamine--sulfonic
4
hydroxylamine--sulfonic acids
4
acids aminating
4
agent presented
4

Similar Publications

Anti-Inflammatory Activity of Gomphrenin-Rich Fraction from L. f. Fruits.

Nutrients

December 2024

Division of Pharmaceutical Biotechnology, Department of Pharmaceutical Biology and Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.

L. (Malabar spinach, Basellaceae), widely consumed as a leafy vegetable, produces dark-colored fruits rich in betacyanins, including rare 6-glycosylated derivatives called gomphrenins. Comprehensive studies on the anti-inflammatory potential of its gomphrenin fraction (A) and crude extract (B) employed various analytical and biological methods.

View Article and Find Full Text PDF

Synthesis and Structure-Activity Relationship of Thiourea Derivatives Against .

Pharmaceuticals (Basel)

November 2024

Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil.

Leishmaniasis, caused by protozoa and transmitted by vectors, presents varied clinical manifestations based on parasite species and host immunity. The lack of effective vaccines or treatments has prompted research into new therapies, including thiourea derivatives, which have demonstrated antiprotozoal activities. We synthesized two series of ,'-disubstituted thiourea derivatives through the reaction of isothiocyanates with amines.

View Article and Find Full Text PDF

Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures.

View Article and Find Full Text PDF

Bacterial contamination is a major public health concern on a global scale. Treatment resistance in bacterial infections is becoming a significant problem that requires solutions. We were interested in obtaining new polymeric functionalized compounds with antibacterial properties.

View Article and Find Full Text PDF

This study aimed to investigate the effect of aminating waste newsprint paper with different aminating agents (ammonia/ammonia water, ethylenediamine, and diethylenetriamine) for the sorption efficiency of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) dyes. To increase the amination efficiency, the paper material was pre-activated with epichlorohydrin. The scope of this study included the characterization of the sorbents tested (FTIR, elemental analysis, BET surface area, porosity, and pH), determination of the influence of pH on dye sorption efficiency, sorption kinetics, and the maximum sorption capacity of the dyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!