How a Single 5 eV Electron Can Induce Double-Strand Breaks in DNA: A Time-Dependent Density Functional Theory Study.

J Phys Chem B

Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.

Published: May 2024

Low-energy (<20 eV) electrons (LEEs) can resonantly interact with DNA to form transient anions (TAs) of fundamental units, inducing single-strand breaks (SSBs), and cluster damage, such as double-strand breaks (DSBs). Shape resonances, which arise from electron capture in a previously unfilled orbital, can induce only a SSB, whereas a single core-excited resonance (i.e., two electrons in excited orbitals of the field of a hole) has been shown experimentally to cause cluster lesions. Herein, we show from time-dependent density functional theory (TDDFT) that a core-excited resonance can produce a DSB, i.e., a single 5 eV electron can induce two close lesions in DNA. We considered the nucleotide with the G-C base pair (ds[5'-G-3']) as a model for electron localization in the DNA double helix and calculated the potential energy surfaces (PESs) of excited states of the ground-state TA of ds[5'-G-3'], which correspond to shape and core-excited resonances. The calculations show that shape TAs start at ca. 1 eV, while core-excited TAs occur only above 4 eV. The energy profile of each excited state and the corresponding PES are obtained by simultaneously stretching both C5'-O5' bonds of ds[5'-G-3']. From the nature of the PES, we find two dissociative (σ*) states localized on the PO groups at the C5' sites of ds[5'-G-3']. The first σ* state at 1 eV is due to a shape resonance, while the second σ* state is induced by a core-excited resonance at 5.4 eV. As the bond of the latter state stretches and arrives close to the dissociation limit, the added electron on C transfers to C5' phosphate, thus demonstrating the possibility of producing a DSB with only one electron of ca. 5 eV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075081PMC
http://dx.doi.org/10.1021/acs.jpcb.3c08367DOI Listing

Publication Analysis

Top Keywords

single electron
4
electron induce
4
induce double-strand
4
double-strand breaks
4
breaks dna
4
dna time-dependent
4
time-dependent density
4
density functional
4
functional theory
4
theory study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!