Severity: Warning
Message: file_get_contents(https://...@nife+ldh&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heterostructure catalysts are considered as promising candidates for promoting the oxygen evolution reaction (OER) process due to their strong electron coupling. However, the inevitable dissolution and detachment of the heterostructure catalysts are caused by the severe reconstruction, dramatically limiting their industrial application. Herein, the NiFe-layered double hydroxide (LDH) nanosheets attached on Mo-NiO microrods (Mo-NiO@NiFe LDH) by the preoxidation strategy of the core NiMoN layer are synthesized for ensuring the high catalytic performance and stability. Owing to the enhanced electron coupling and preoxidation process, the obtained Mo-NiO@NiFe LDH exhibits a superlow overpotential of 253 mV to achieve a practically relevant current density of 1000 mA cm for OER with exceptional stability over 1200 h. Notably, the overall water splitting system based on Mo-NiO@NiFe LDH reveals remarkable stability, maintaining the catalytic activity at a current density of 1000 mA cm for 140 h under industrial harsh conditions. Furthermore, the Mo-NiO@NiFe LDH demonstrates outstanding activity and long-term durability in a practical alkaline electrolyzer assembly with a porous membrane, even surpassing the performance of IrO. This work provides a new sight for designing and synthesizing highly stable heterojunction electrocatalysts, further promoting and realizing the industrial electrocatalytic OER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c00974 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!