Background And Aims: Noninvasive tools assessing steatosis, such as ultrasonography-based 2D-attenuation imaging (ATI), are needed to tackle the worldwide burden of steatotic liver disease. This one-stage individual patient data (IPD) meta-analysis aimed to create an ATI-based steatosis grading system.
Approach And Results: A systematic review (EMBASE + MEDLINE, 2018-2022) identified studies, including patients with histologically or magnetic resonance imaging proton-density fat fraction (MRI-PDFF)-verified ATI for grading steatosis (S0 to S3). One-stage IPD meta-analyses were conducted using generalized mixed models with a random study-specific intercept. Created ATI-based steatosis grading system (aS0 to aS3) was externally validated on a prospective cohort of patients with type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (n=174, histologically and MRI-PDFF-verified steatosis). Eleven enrolled studies included 1374 patients, classified into S0, S1, S2, and S3 in 45.4%, 35.0%, 9.3%, and 10.3% of the cases. ATI was correlated with histological steatosis ( r = 0.60; 95% CI: 0.52, 0.67; p < 0.001) and MRI-PDFF ( r = 0.70; 95% CI: 0.66, 0.73; p < 0.001) but not with liver stiffness ( r = 0.03; 95% CI: -0.04, 0.11, p = 0.343). Steatosis grade was an independent factor associated with ATI (coefficient: 0.24; 95% CI: [0.22, 0.26]; p < 0.001). ATI marginal means within S0, S1, S2, and S3 subpopulations were 0.59 (95% CI: [0.58, 0.61]), 0.69 (95% CI [0.67, 0.71]), 0.78 (95% CI: [0.76, 0.81]), and 0.85 (95% CI: [0.83, 0.88]) dB/cm/MHz; all contrasts between grades were significant ( p < 0.0001). Three ATI thresholds were calibrated to create a new ATI-based steatosis grading system (aS0 to aS3, cutoffs: 0.66, 0.73, and 0.81 dB/cm/MHz). Its external validation showed Obuchowski measures of 0.84 ± 0.02 and 0.82 ± 0.02 with histologically based and MRI-PDFF-based references.
Conclusions: ATI is a reliable, noninvasive marker of steatosis. This validated ATI-based steatosis grading system could be valuable in assessing patients with metabolic dysfunction-associated steatotic liver disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HEP.0000000000000895 | DOI Listing |
BMC Med Imaging
January 2025
Department of Ultrasound, Donggang Branch the First Hospital of Lanzhou University, Lanzhou, 730000, China.
Background: US tools to quantify hepatic steatosis have recently been made clinically available by different manufacturers, but comparative data on their consistency are lacking.
Objective: US tools to quantify hepatic steatosis have recently been made clinically available by different manufacturers, but comparative data on their consistency are lacking. The aim of our study was to compare the diagnostic consistency for evaluating hepatic steatosis by two different US techniques, hepatorenal index by B-mode Ratio and attenuation coefficient by attenuation imaging (ATI).
Diagnostics (Basel)
December 2024
Peking University People's Hospital, Peking University Hepatology Institute, Infectious Disease and Hepatology Center of Peking University People's Hospital, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing 100044, China.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of fat in the liver, excluding excessive alcohol consumption and other known causes of liver injury. Animal models are often used to explore different pathogenic mechanisms and therapeutic targets of MASLD. The aim of this study is to apply an artificial intelligence (AI) system based on second-harmonic generation (SHG)/two-photon-excited fluorescence (TPEF) technology to automatically assess the dynamic patterns of hepatic steatosis in MASLD mouse models.
View Article and Find Full Text PDFLife Sci
January 2025
Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:
Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Public Health, Faculty of Health Science, Saudi Electronic University, Riyadh, Saudi Arabia.
Background: Type 2 diabetes Mellitus (T2DM) increases vulnerability to metabolic dysfunction-associated steatotic liver disease (MASLD). Therefore, this study aims to determine the prevalence and coexistence of MASLD in patients with T2DM using ultrasound.
Methods: This cross-sectional retrospective study included 168 patients with T2DM from multiple diabetes clinics in Abha City, Asir region, recruited between August 2023 and December 2023.
South Med J
January 2025
From the Department of Medicine, Division of Cardiovascular Disease, University of Chicago-Northshore Program, Evanston, Illinois.
Objectives: Liver fibrosis represents a common sequela of nonalcoholic fatty liver disease (NAFLD) and other chronic liver diseases. Noninvasive liver fibrosis scores (LFSs) aim to evaluate the severity of liver fibrosis. Whether LFSs can predict the risk of future cardiovascular events (CVEs) remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!