In the field of medical imaging, the fusion of data from diverse modalities plays a pivotal role in advancing our understanding of pathological conditions. Sparse representation (SR), a robust signal modeling technique, has demonstrated noteworthy success in multi-dimensional (MD) medical image fusion. However, a fundamental limitation appearing in existing SR models is their lack of directionality, restricting their efficacy in extracting anatomical details from different imaging modalities. To tackle this issue, we propose a novel directional SR model, termed complex sparse representation (ComSR), specifically designed for medical image fusion. ComSR independently represents MD signals over directional dictionaries along specific directions, allowing precise analysis of intricate details of MD signals. Besides, current studies in medical image fusion mostly concentrate on addressing either 2D or 3D fusion problems. This work bridges this gap by proposing a MD medical image fusion method based on ComSR, presenting a unified framework for both 2D and 3D fusion tasks. Experimental results across six multi-modal medical image fusion tasks, involving 93 pairs of 2D source images and 20 pairs of 3D source images, substantiate the superiority of our proposed method over 11 state-of-the-art 2D fusion methods and 4 representative 3D fusion methods, in terms of both visual quality and objective evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2024.3391314 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
January 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, School of Computation, Information and Technology, TUM, Germany; Munich Institute of Biomedical Engineering, TUM, Germany. Electronic address:
Blood cell aggregates are clinically useful biomarkers in a number of medical disorders. This protocol provides accurate and quantitative analysis of cell aggregates using a small volume of whole blood and imaging flow cytometry. We describe steps for sample collection, staining, and measurement.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Gill Institute for Neuroscience, Program in Neuroscience, Department of Psychological and Brain Sciences Indiana University, Bloomington, IN 47405, USA. Electronic address:
Microscopic cell segmentation typically requires complex imaging, staining, and computational steps to achieve acceptable consistency. Here, we describe a protocol for the high-fidelity segmentation of the nucleus and cytoplasm in cell culture and apply it to monitor interferon-induced signal transducer and activator of transcription (STAT) signaling. We provide guidelines for sample preparation, image acquisition, and segmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!