Searching for tandem mass spectrometry proteomics data against a database is a well-established method for assigning peptide sequences to observed spectra but typically cannot identify peptides harboring unexpected post-translational modifications (PTMs). Open modification searching aims to address this problem by allowing a spectrum to match a peptide even if the spectrum's precursor mass differs from the peptide mass. However, expanding the search space in this way can lead to a loss of statistical power to detect peptides. We therefore developed a method, called CONGA (combining open and narrow searches with group-wise analysis), that takes into account results from both types of searches─a traditional "narrow window" search and an open modification search─while carrying out rigorous false discovery rate control. The result is an algorithm that provides the best of both worlds: the ability to detect unexpected PTMs without a concomitant loss of power to detect unmodified peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.3c00399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!