A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dose-Response Modelling of Resistance Exercise Across Outcome Domains in Strength and Conditioning: A Meta-analysis. | LitMetric

AI Article Synopsis

  • The meta-analysis examines how different resistance training variables affect physical performance outcomes, such as strength and power.
  • The study analyzed data from 295 training studies involving over 6,700 participants to identify dose-response relationships associated with training frequency, volume, and intensity.
  • Results show that specific training variables significantly impact improvements in maximum strength, vertical jump, sprinting, and other athletic performances, aiding in the optimal design of strength and conditioning programs.

Article Abstract

Background: Resistance exercise is the most common training modality included within strength and conditioning (S&C) practice. Understanding dose-response relationships between resistance training and a range of outcomes relevant to physical and sporting performance is of primary importance for quality S&C prescription.

Objectives: The aim of this meta-analysis was to use contemporary modelling techniques to investigate resistance-only and resistance-dominant training interventions, and explore relationships between training variables (frequency, volume, intensity), participant characteristics (training status, sex), and improvements across a range of outcome domains including maximum strength, power, vertical jump, change of direction, and sprinting performance.

Methods: Data were obtained from a database of training studies conducted between 1962 and 2018, which comprised healthy trained or untrained adults engaged in resistance-only or resistance-dominant interventions. Studies were not required to include a control group. Standardized mean difference effect sizes were calculated and interventions categorized according to a range of training variables describing frequency (number of sessions per week), volume (number of sets and repetitions performed), overall intensity (intensity of effort and load, categorised as low, medium or high), and intensity of load (represented as % of one-repetition maximum [1RM] prescribed). Contemporary modelling techniques including Bayesian mixed-effects meta-analytic models were fitted to investigate linear and non-linear dose-responses with models compared based on predictive accuracy.

Results: Data from a total of 295 studies comprising 535 groups and 6,710 participants were included with analyses conducted on time points ≤ 26 weeks. The best performing model included: duration from baseline, average number of sets, and the main and interaction effects between outcome domain and intensity of load (% 1RM) expressed non-linearly. Model performance was not improved by the inclusion of participant training status or sex.

Conclusions: The current meta-analysis represents the most comprehensive investigation of dose-response relationships across a range of outcome domains commonly targeted within strength and conditioning to date. Results demonstrate the magnitude of improvements is predominantly influenced by training intensity of load and the outcome measured. When considering the effects of intensity as a % 1RM, profiles differ across outcome domains with maximum strength likely to be maximised with the heaviest loads, vertical jump performance likely to be maximised with relatively light loads (~ 30% 1RM), and power likely to be maximised with low to moderate loads (40-70% 1RM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239729PMC
http://dx.doi.org/10.1007/s40279-024-02006-3DOI Listing

Publication Analysis

Top Keywords

outcome domains
16
strength conditioning
12
intensity load
12
training
9
resistance exercise
8
dose-response relationships
8
contemporary modelling
8
modelling techniques
8
resistance-only resistance-dominant
8
training variables
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!