The CRISPR-Cas system consists of Cas proteins and single-stranded RNAs that recruit Cas proteins and specifically target the nucleic acid. Some Cas proteins can accurately cleave the target nucleic acid under the guidance of the single-stranded RNAs. Due to its exceptionally high specificity, the CRISPR-Cas system is now widely used in various fields such as gene editing, transcription regulation, and molecular diagnosis. However, the huge size of the most frequently utilized Cas proteins (Cas9, Cas12a, and Cas13, which contain 950-1,400 amino acids) can limit their applicability, especially in eukaryotic gene editing, where larger Cas proteins are difficult to deliver into the target cells. Recently discovered miniature CRISPR-Cas proteins, consisting of only 400 to 800 amino acids, offer the possibility of overcoming this limitation. This article systematically reviews the latest research progress of several miniature CRISPR-Cas proteins (Cas12f, Cas12j, Cas12k, and Cas12m) and their practical applications in the field of gene editing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-024-03962-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!