A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling variations and enhancing prediction of successful sphincter-preserving resection for low rectal cancer: a post hoc analysis of the multicentre LASRE randomized clinical trial. | LitMetric

AI Article Synopsis

  • The study investigates how well hospitals can predict successful sphincter-preserving resections (SSPR) for low rectal cancer, aiming to minimize unnecessary colostomies through performance review and AI models.
  • It involved a retrospective analysis of 604 patients from 22 hospitals in China who received neoadjuvant chemoradiotherapy followed by surgery; the team used seven AI algorithms to create predictive models for SSPR outcomes.
  • Results showed a 71.9% overall SSPR rate, but significant variation among hospitals (37.7% to 94.4%); key predictive features included tumor distance from the anal verge and clinical staging metrics.

Article Abstract

Background: Accurate prediction of successful sphincter-preserving resection (SSPR) for low rectal cancer enables peer institutions to scrutinize their own performance and potentially avoid unnecessary permanent colostomy. The aim of this study is to evaluate the variation in SSPR and present the first artificial intelligence (AI) models to predict SSPR in low rectal cancer patients.

Study Design: This was a retrospective post hoc analysis of a multicenter, non-inferiority randomized clinical trial (LASRE, NCT01899547) conducted in 22 tertiary hospitals across China. A total of 604 patients who underwent neoadjuvant chemoradiotherapy (CRT) followed by radical resection of low rectal cancer were included as the study cohort, which was then split into a training set (67%) and a testing set (33%). The primary end point of this post hoc analysis was SSPR, which was defined as meeting all the following criteria: (1) sphincter-preserving resection; (2) complete or nearly complete TME, (3) a clear CRM (distance between margin and tumour of 1 mm or more), and (4) a clear DRM (distance between margin and tumour of 1 mm or more). Seven AI algorithms, namely, support vector machine (SVM), logistic regression (LR), extreme gradient boosting (XGB), light gradient boosting (LGB), decision tree classifier (DTC), random forest (RF) classifier, and multilayer perceptron (MLP), were employed to construct predictive models for SSPR. Evaluation of accuracy in the independent testing set included measures of discrimination, calibration, and clinical applicability.

Results: The SSPR rate for the entire cohort was 71.9% (434/604 patients). Significant variation in the rate of SSPR, ranging from 37.7 to 94.4%, was observed among the hospitals. The optimal set of selected features included tumour distance from the anal verge before and after CRT, the occurrence of clinical T downstaging, post-CRT weight and clinical N stage measured by magnetic resonance imaging. The seven different AI algorithms were developed and applied to the independent testing set. The LR, LGB, MLP and XGB models showed excellent discrimination with area under the receiver operating characteristic (AUROC) values of 0.825, 0.819, 0.819 and 0.805, respectively. The DTC, RF and SVM models had acceptable discrimination with AUROC values of 0.797, 0.766 and 0.744, respectively. LR and LGB showed the best discrimination, and all seven AI models had superior overall net benefits within the range of 0.3-0.8 threshold probabilities. Finally, we developed an online calculator based on the LGB model to facilitate clinical use.

Conclusions: The rate of SSPR exhibits substantial variation, and the application of AI models has demonstrated the ability to predict SSPR for low rectal cancers with commendable accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254249PMC
http://dx.doi.org/10.1097/JS9.0000000000001014DOI Listing

Publication Analysis

Top Keywords

low rectal
20
rectal cancer
16
sphincter-preserving resection
12
post hoc
12
hoc analysis
12
sspr low
12
testing set
12
sspr
9
prediction successful
8
successful sphincter-preserving
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!