Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Due to fungal diseases that threaten immunocompromised patients, along with the limited availability of antifungal agents, there is an urgent need for new antifungal compounds to treat fungal infections. Here, we aimed to identify potential antifungal drugs from natural products using the fission yeast as a model organism since it shares many features with some pathogenic fungi. Here, we identified tubeimoside I (TBMS1), an extract from Chinese herbal medicine, that showed strong antifungal activity against . To gain insight into the underlying mechanism, we performed transcriptomics analyses of cells exposed to TBMS1. A significant proportion of the differential expressed genes were involved in cell wall organization or biogenesis. Additionally, TBMS1 treatment of cells resulted in pleiotropic phenotypes, including increased sensitivity to β-glucanase, enhanced calcineurin activity, translocation of GFP-Prz1 to the nucleus, as well as enhanced dephosphorylation of Prz1, suggesting that TBMS1 disrupted cell wall integrity of cells. Notably, calcofluor staining showed that abnormal deposits of cell wall materials were observed in the septum and cell wall of the TBMS1-treated cells, which were further corroborated by electron microscopy analysis. We also found that oxidative stress might be involved in the antifungal action of TBMS1. Moreover, we confirmed the antifungal activities of TBMS1 against several clinical isolates of pathogenic fungi. Collectively, our findings suggest that TBMS1, a novel antifungal compound, exerts its antifungal activity by targeting cell walls, which may pave the way for the development of a new class of antifungals.
Importance: Fungal infections pose a serious threat to public health and have become an emerging crisis worldwide. The development of new antifungal agents is urgently needed. Here, we identified compound tubeimoside I (TBMS1) for the first time showing strong antifungal activity, and explored the underlying mechanisms of its antifungal action by using the model yeast . Notably, we presented multiple evidence that TBMS1 exerts its antifungal activity through targeting fungal cell walls. Moreover, we verified the antifungal activities of TBMS1 against several pathogenic fungi. Our work indicated that TBMS1 may serve as a novel antifungal candidate, which provides an important foundation for designing and developing new cell wall-targeting agents for combating life-threatening fungal infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237440 | PMC |
http://dx.doi.org/10.1128/spectrum.04047-23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!