Tough carboxymethylcellulose nanofibers (CMF)/zirconium (Zr) hydrogels were easily obtained by a freeze-crosslinking method, where Zr-containing HCl solution was added to frozen CMF sol and the mixture was allowed to thaw. The Zr content of the hydrogels increased with increasing Zr concentration in the initial HCl solution. Furthermore, the mechanical strength increased with increasing Zr content. The Young's modulus value was improved by approximately 6 times compared to the CMF hydrogel without Zr, , from 4.5 kPa to 27.2 kPa. The hydrogel had a porous structure with a pore size of 133 ± 37 μm and a CMF-Zr sheet structure around the pores. The obtained CMF-Zr hydrogel exhibited high adsorptivity for fluoride. The maximum adsorption capacity () was estimated to be 24.1 mg g. This simple gelation method provides useful insights for the development of easy-to-handle hydrogel-based adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr01572jDOI Listing

Publication Analysis

Top Keywords

hcl solution
8
increased increasing
8
freeze-crosslinking approach
4
approach preparing
4
preparing carboxymethyl
4
carboxymethyl cellulose
4
cellulose nanofiber/zirconium
4
nanofiber/zirconium hydrogels
4
hydrogels fluoride
4
fluoride adsorbents
4

Similar Publications

A Case Study on Recycling Industrial Wastewater with Nanofiltration Membrane Separation Technology.

Membranes (Basel)

December 2024

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.

As pressure on water resources intensifies and stringent regulations for groundwater and surface water are enacted, wastewater recycling has emerged as a key research objective for many enterprises. In this study, based on the actual wastewater discharged from Eternal Electronic (Suzhou, China) Co., Ltd.

View Article and Find Full Text PDF

This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.

View Article and Find Full Text PDF

Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells.

Small

December 2024

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China.

Incorporating chlorine into the SnO electron transport layer (ETL) has proven effective in enhancing the interfacial contact between SnO and perovskite in perovskite solar cells (PSCs). However, previous studies have primarily focused on the role of chlorine in passivating surface trap defects in SnO, without considering its influence on the buried interface. Here, hydrochloric acid (HCl) is introduced as a chlorine source into commercial SnO to form Cl-capped SnO (Cl-SnO) ETL, aiming to optimize the buried interface of the PSC.

View Article and Find Full Text PDF

Exploration of the bio-availability and the risk thresholds of cadmium and arsenic in contaminated paddy soils.

Heliyon

December 2024

The Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, The Key Laboratory of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China.

Cadmium (Cd) and arsenic (As) contamination risk in paddy soils has raised global concern. In order to scientifically and objectively evaluate the bioavailability of soil Cd, As and the risk of Cd or As threshold in contaminated farmland, this study was conducted to investigate different types of extractants for their potential extraction efficiency of Cd and As. Soils from two different parent materials in Hunan, Yueyang and Yiyang, typical double-cropping rice production areas in the south of China, were used as test soils.

View Article and Find Full Text PDF

Fabrication of ethylcellulose/technical alkaline lignin composite film with high anticorrosion performance in NaCl, HCl, and KOH solutions.

Int J Biol Macromol

December 2024

Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China. Electronic address:

Technical alkaline lignin (TAL)-based composite films have been developed for anti-corrosion applications, during which one-component solvents, including acetone and ethanol, were employed. The poor solubility of TAL in the abovementioned solvents undoubtedly resulted in inhomogeneous surface micromorphology and the consequent unstable performance. The present study provides a series of ethylcellulose/TAL (EC/TAL) composite films with uniform surface microstructure by using the 1,4-dioxane/water binary solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!