AI Article Synopsis

  • The study aimed to create a machine learning model to predict lateral compartment osteoarthritis (OA) in patients with a discoid lateral meniscus (DLM), focusing on age as a contributing factor.
  • Data from 611 patients diagnosed with DLM using MRI were analyzed using various algorithms, and extreme gradient boosting was found to be the most effective model for predictions.
  • Age was the top predictor for younger patients, while the presence of medial compartment OA became more predictive in older patients, highlighting the importance of age and medial OA in treatment strategies.

Article Abstract

Purpose: The objective of this study was to develop a machine learning model that would predict lateral compartment osteoarthritis (OA) in the discoid lateral meniscus (DLM), from which to then identify factors contributing to lateral compartment OA, with a key focus on the patient's age.

Methods: Data were collected from 611 patients with symptomatic DLM diagnosed using magnetic resonance imaging between April 2003 and May 2022. Twenty features, including demographic, clinical and radiological data and six algorithms were used to develop the predictive machine learning models. Shapley additive explanation (SHAP) analysis was performed on the best model, in addition to subgroup analyses according to age.

Results: Extreme gradient boosting classifier was identified as the best prediction model, with an area under the receiver operating characteristic curve (AUROC) of 0.968, the highest among all the models, regardless of age (AUROC of 0.977 in young age and AUROC of 0.937 in old age). In the SHAP analysis, the most predictive feature was age, followed by the presence of medial compartment OA. In the subgroup analysis, the most predictive feature was age in young age, whereas the most predictive feature was the presence of medial compartment OA in old age.

Conclusion: The machine learning model developed in this study showed a high predictive performance with regard to predicting lateral compartment OA of the DLM. Age was identified as the most important factor, followed by medial compartment OA. In subgroup analysis, medial compartmental OA was found to be the most important factor in the older age group, whereas age remained the most important factor in the younger age group. These findings provide insights that may prove useful for the establishment of strategies for the treatment of patients with symptomatic DLM.

Level Of Evidence: Level III.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ksa.12196DOI Listing

Publication Analysis

Top Keywords

machine learning
16
lateral compartment
12
predictive feature
12
medial compartment
12
age
11
medial compartmental
8
discoid lateral
8
lateral meniscus
8
learning model
8
patients symptomatic
8

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!