Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the influence of quantum interference (QI) and broken spin-symmetry on the thermoelectric response of node-possessing junctions, finding a dramatic enhancement of the spin-thermopower (), figure-of-merit (), and maximum thermodynamic efficiency (η) caused by destructive QI. Using many-body and single-particle methods, we calculate the response of 1,3-benzenedithiol and cross-conjugated molecule-based junctions subject to an applied magnetic field, finding nearly universal behavior over a range of junction parameters with , , and reaching peak values of , 1.51, and 28% of Carnot efficiency, respectively. We also find that the quantum-enhanced spin-response is spectrally broad, and the field required to achieve peak efficiency scales with temperature. The influence of off-resonant thermal channels (e.g., phonon heat transport) on this effect is also investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080465 | PMC |
http://dx.doi.org/10.1021/acsnano.4c01297 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!