Background: To evaluate whether ongoing axonal loss can be prevented in multifocal motor neuropathy (MMN) treated with immunoglobulin G (IgG), a group of patients with a median disease duration of 15.7 years (range: 8.3-37.8), treated with titrated dosages of immunoglobulins, was studied electrophysiologically at time of diagnosis and at follow-up.
Results: At follow-up, the Z-score of the compound motor action potential amplitude of the median, fibular, and tibial nerves and the neurological performances were determined. In seven patients with a treatment-free period of 0.3 years (0.2-0.4), there was no progression of axonal loss (p = 0.2), whereas a trend toward further axonal loss by 1.3 Z-scores (0.9-17.0, p = 0.06) was observed in five patients with a treatment-free period of 4.0 years (0.9-9.0). The axonal loss in the group with a short treatment delay was significantly smaller than in the group with a longer treatment delay (p = 0.02). Also, there was an association between treatment delay and ongoing axonal loss (p = 0.004). The electrophysiological findings at follow-up were associated with the isokinetic strength performance, the neurological impairment score, and the disability, supporting the clinical relevance of the electrophysiological estimate of axonal loss.
Conclusion: Swift initiation of an immediately titrated IgG dosage can prevent further axonal loss and disability in continuously treated MMN patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235608 | PMC |
http://dx.doi.org/10.1111/ene.16305 | DOI Listing |
Spinal Cord
January 2025
McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
Study Design: Experimental Animal Study.
Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.
Setting: University of Florida laboratory in Gainesville, USA.
Neurochem Res
January 2025
Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.
Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amsterdam UMC, location VUmc, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam, Netherlands.
Background: Recent studies highlight distinct patterns of cortical atrophy between amnestic (typical) and non-amnestic (atypical, with subtypes: behavioural, dysexecutive, logopenic and visuospatial) clinical phenotypes of Alzheimer's disease (AD). The current study aimed to assess regional MRI patterns of cortical atrophy across AD phenotypes, and their association with amyloid-beta (Aβ), phosphorylated tau (pTau), axonal degeneration (NfL) and microvascular deterioration (COLIV).
Method: Postmortem In-situ 3DT1 3T-MRI data was collected for 33 AD (17 typical, 16 atypical) and 16 control brain donors.
Alzheimers Dement
December 2024
Saint James School of Medicine, Park Ridge, IL, USA.
Background: Oxidative stress is formed by a perturbation of redox homeostasis and linked to the development of Alzheimer's disease (AD) [1]. This imbalance results in an abundance of free radicals that exceeds the antioxidant capacity. Xanthine oxidase (XO) is an enzyme responsible for producing uric acid through the metabolism of purine nucleotides, specifically hypoxanthine and xanthine to uric acid [2].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!