Sugar transport proteins (STPs) are high-affinity H-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of . (common bean) revealed that was expressed in source leaves and seed coats throughout seed development. In contrast, transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity ( ) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11033725PMC
http://dx.doi.org/10.1002/pld3.585DOI Listing

Publication Analysis

Top Keywords

source leaves
16
seed coats
12
h-coupled monosaccharide
8
leaves seed
8
developing embryos
8
depolarized membrane
8
stp131 h-coupled
4
monosaccharide transporter
4
source
4
transporter source
4

Similar Publications

Artichoke ( L.) is an herbaceous perennial plant from the Mediterranean Basin, cultivated as a poly-annual crop in different countries. Artichoke produces a considerable amount of waste at the end of the harvesting season in the field (5.

View Article and Find Full Text PDF

Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of L. Leaf Extracts Against sp.

Plants (Basel)

December 2024

Laboratory of Entomology, Juana Díaz Agricultural Experiment Station, Department of Agro-Environmental Sciences, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA.

Plant botanical extracts are recognized for being a source of biologically active phytochemicals that potentially have diverse applications. The phytochemical composition, potential cytotoxicity, and insecticidal effectiveness of three leaf extracts from the folkloric medicinal plant L. (Calophyllaceae) were investigated.

View Article and Find Full Text PDF

Scots Pine Bark Extracts as Co-Hardeners of Epoxy Resins.

Molecules

December 2024

Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland.

Extracts from natural waste like bark or leaves are great sources of phytochemicals, which contain functional groups (hydroxyl, carboxylic, vinyl, allyl) attractive in terms of polymer synthesis. In this study, the synthesis of epoxy with an extract of Scots pine bark as a natural co-hardener was evaluated. Ultraviolet-visible (UV-Vis) spectroscopy was used for the identification of phytochemicals with conjugated dienes and quantification of TPC.

View Article and Find Full Text PDF

Aims: The aim of this study was to evaluate the impact of the introduction of a phosphoribosylpyrophosphate synthetase (PRS) mutation into a plant growth-promoting strain of Methylorubrum on the enhancement of phyllosphere colonization, with the ultimate goal of improving plant growth and quality.

Methods And Results: A strain of Methylorubrum populi (named HS04) was isolated from the groundnut leave and found to process the plant-promoting traits, including the ability to produce indole acetic acid, siderophore, 1-aminocyclopropane-1- carboxylate deaminase, and to fix nitrogen. The application via foliar spray significantly increased the fresh weight of cucumber seedlings cultivated in a standard growth chamber, with 43.

View Article and Find Full Text PDF

Particulate matter and potentially toxic element content in urban ornamental plant species to assess pollutants trapping capacity.

J Environ Manage

January 2025

Department of Plant Biology and Ecology, University of Seville, Avda. Reina Mercedes S/n, Apartado de Correos, 1095, 41012, Sevilla, Spain. Electronic address:

Urban environments are usually polluted by anthropogenic activities like traffic, a major source of potentially toxic elements (PTEs), and ornamental plant species may reduce contamination by trapping traffic-related air pollutants in their leaves. The purpose of this study was tested the trapping pollutant capacity of four species commonly used in green areas of Seville city (SW Spain) to better choose species in urban green planning. Composition of particulate matter (PM) obtained from foliar surfaces (sPM) and wax-included (wPM) was determined by EDX-SEM analysis in samples from different city locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!