Introduction: Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises.
Areas Covered: Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1.
Expert Opinion: To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14728222.2024.2344697 | DOI Listing |
PLoS One
December 2024
Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America.
R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes.
View Article and Find Full Text PDFJ Med Chem
December 2024
Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States.
Hematopoietic progenitor kinase 1 (HPK1/MAP4K1) represents a high interest target for the treatment of cancer through an immune-mediated mechanism. Herein we present highlights of the drug discovery campaign within the lactam/azalactam series of inhibitors that yielded a small molecule (, PF-07265028), which was advanced to a phase 1 clinical trial (NCT05233436). Key components of the discovery effort included optimization of potency through mitigation of ligand strain as guided by the use of cocrystal structures, mitigation of ADME liabilities (plasma instability and fraction metabolism by CYP2D6), and optimization of kinase selectivity, particularly over immune-modulating kinases with high homology to HPK1.
View Article and Find Full Text PDFJ Med Chem
December 2024
Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China.
Hematopoietic progenitor kinase 1 (HPK1) has emerged as an attractive target for immunotherapy due to its critical role in T cell activation and proliferation. The major challenge in developing HPK1 inhibitors lies in balancing kinase selectivity, pharmacokinetic (PK) properties, and therapeutic efficacy. In this study, we report a series of pyridine-2-carboxamide analogues demonstrating strong HPK1 inhibitory activity in enzymatic and cellular assays, along with good kinase selectivity.
View Article and Find Full Text PDFFuture Med Chem
December 2024
Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China.
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action.
View Article and Find Full Text PDFAdv Mater
November 2024
National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Hematopoietic progenitor pinase1 (HPK1) knockout has been identified as an efficient route to enhance anti-tumor immune response. Here, this work develops an oral proteolysis targeting chimera (PROTAC) targeting HPK1 to efficiently and selectively degrade HPK1 to augment immunotherapeutic outcomes. In a postoperative tumor model of human cervical cancer in NSG mice, the orally-administrated PROTAC can reach tumors, down-regulate HPK1 levels in locally-administrated CAR-T cells, and promote their efficiency in inhibiting solid tumor recurrence, achieving 50% partial response (PR) and 50% complete response (CR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!