AI Article Synopsis

  • Effective surface passivation of monocrystalline silicon (c-Si) solar cells is essential for identifying and reducing bulk defects to improve efficiency.
  • The study introduces Nafion, an organic copolymer, as a room-temperature passivation method for Czochralski (Cz) Si wafers, tested alongside traditional methods like AlO and liquid HF/HCl.
  • Results indicate that Nafion offers similar or superior passivation effects at room temperature, maintaining quality for about 24 hours, making it a viable alternative for investigating bulk defects in c-Si solar technology.

Article Abstract

In monocrystalline Si (c-Si) solar cells, identification and mitigation of bulk defects are crucial to achieving a high photoconversion efficiency. To spectroscopically detect defects in the c-Si bulk, it is desirable to passivate the surface defects. Passivation of the c-Si surface with dielectrics such as AlO and SiN requires deposition at elevated temperatures, which can influence defects in the bulk. Herein, we report on the passivation of different Czochralski (Cz) Si wafer surfaces by an organic copolymer, Nafion. We test the efficacy of the surface passivation at temperatures ranging from 6 to 473 K to detect bulk defects using electron paramagnetic resonance (EPR) spectroscopy. By comparing with state-of-the-art passivation layers, including AlO and liquid HF/HCl, we found that at room temperature, Nafion can provide comparable passivation of n-type Cz Si with an implied open-circuit voltage () of 713 mV and a recombination current prefactor of 5 fA/cm. For p-type Cz Si, we obtained an of 682 mV with a of 22.4 fA/cm. Scanning electron microscopy and photoluminescence reveal that Nafion can also be used to passivate the surface of c-Si solar cell fragments scribed from a solar cell module by using a laser. Consistent with previous studies, analysis of the EPR spectroscopy data confirms that the H-terminated surface is necessary, and fixed negative charge in Nafion is responsible for the field-effect passivation. While the surface passivation quality was maintained for almost 24 h, which is sufficient for spectroscopic measurements, the passivation degraded over longer durations, which can be attributed to surface SiO growth. These results show that Nafion is a promising room-temperature surface passivation technique to study bulk defects in c-Si.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03872DOI Listing

Publication Analysis

Top Keywords

surface passivation
16
bulk defects
16
passivation
10
electron paramagnetic
8
paramagnetic resonance
8
c-si solar
8
defects c-si
8
surface
8
passivate surface
8
epr spectroscopy
8

Similar Publications

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.

View Article and Find Full Text PDF

Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS Nanosheets.

Adv Mater

January 2025

Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.

Article Synopsis
  • During fast-charging, uneven lithium plating on graphite anodes leads to performance issues and safety risks for lithium-ion batteries due to the formation of a passivation layer known as the solid-electrolyte interphase (SEI).
  • A molybdenum disulfide (MoS) coating on natural graphite modifies the SEI properties, resulting in faster charging times and improved long-term cycling performance by enhancing lithium transport and reducing interfacial resistance.
  • The MoS-NG anode demonstrates superior fast-charging capabilities, achieving a charging time of 14.7 minutes at 80% state of charge, making it a viable option for electric vehicle applications over 300 cycles without sacrificing energy density.
View Article and Find Full Text PDF

Thermal Annealing-Induced Phase Conversion in N-type Triple-Cation Lead-Based Perovskite Field Effect Transistors.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.

The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films.

View Article and Find Full Text PDF

Perovskite nanocrystals (PNCs) are promising active materials because of their outstanding optoelectronic properties, which are finely tunable via size and shape. However, previous synthetic methods such as hot-injection and ligand-assisted reprecipitation require a high synthesis temperature or provide limited access to homogeneous PNCs, leading to the present lack of commercial value and real-world applications of PNCs. Here, we report a room-temperature approach to synthesize PNCs within a liquid crystalline antisolvent, enabling access to PNCs with a precisely defined size and shape and with reduced surface defects.

View Article and Find Full Text PDF

Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems.

Nat Commun

January 2025

College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, China.

Self-assembled monolayers (SAMs) have displayed unpredictable potential in efficient perovskite solar cells (PSCs). Yet most of SAMs are largely suitable for pure Pb-based devices, precisely developing promising hole-selective contacts (HSCs) for Sn-based PSCs and exploring the underlying general mechanism are fundamentally desired. Here, based on the prototypical donor-acceptor SAM MPA-BT-BA (BT), oligoether side chains with different length (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!