Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992092 | PMC |
http://dx.doi.org/10.1186/s40643-021-00434-x | DOI Listing |
Sci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.
Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.
4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from Streptomyces cavernae (Sc4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of Sc4ASO.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy. Electronic address:
Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!