Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493841 | PMC |
http://dx.doi.org/10.1002/ajmg.b.32983 | DOI Listing |
AJOB Empir Bioeth
September 2024
Harvard Center for Bioethics, Harvard Medical School, Boston, Massachusetts, USA.
Introduction: Deep brain stimulation (DBS) is approved under a humanitarian device exemption to manage treatment-resistant obsessive-compulsive disorder (TR-OCD) in adults. It is possible that DBS may be trialed or used clinically off-label in children and adolescents with TR-OCD in the future. DBS is already used to manage treatment-resistant childhood dystonia.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
December 2024
Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.
Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD.
View Article and Find Full Text PDFJ Affect Disord
April 2024
Department of Surgery, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Background: Ablative surgery using bilateral anterior capsulotomy (BAC) is an option for treatment resistant depression (TRD) and obsessive-compulsive disorder (TROCD). The location and extent of the lesion within anterior limb of the internal capsule (ALIC) remains uncertain. Accumulating evidence has suggested that the lesion should be located ventrally while limiting the dorsal extent.
View Article and Find Full Text PDFmedRxiv
April 2023
Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden.
Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!