Background: The molecular mechanism of fetal cystic hygroma (CH) is still unclear, and no study has previously reported the transcriptome changes of single cells in CH. In this study, single-cell transcriptome sequencing (scRNA-seq) was used to investigate the characteristics of cell subsets in the lesion tissues of CH patients.

Methods: Lymphoid tissue collected from CH patients and control donors for scRNA-seq analysis. Differentially expressed gene enrichment in major cell subpopulations as well as cell-cell communication were analyzed. At the same time, the expression and interactions of important VEGF signaling pathway molecules were analyzed, and potential transcription factors that could bind to KDR (VEGFR2) were predicted.

Results: The results of scRNA-seq showed that fibroblasts accounted for the largest proportion in the lymphatic lesions of CH patients. There was a significant increase in the proportion of lymphatic endothelial cell subsets between the cases and controls. The VEGF signaling pathway is enriched in lymphatic endothelial cells and participates in the regulation of cell-cell communication between lymphatic endothelial cells and other cells. The key regulatory gene KDR in the VEGF signaling pathway is highly expressed in CH patients and interacts with other differentially expressed EDN1, TAGLN, and CLDN5 Finally, we found that STAT1 could bind to the KDR promoter region, which may play an important role in promoting KDR up-regulation.

Conclusion: Our comprehensive delineation of the cellular composition in tumor tissues of CH patients using single-cell RNA-sequencing identified the enrichment of lymphatic endothelial cells in CH and highlighted the activation of the VEGF signaling pathway in lymphoid endothelial cells as a potential modulator. The molecular and cellular pathogenesis of fetal cystic hygroma (CH) remains largely unknown. This study examined the distribution and gene expression signature of each cell subpopulation and the possible role of VEGF signaling in lymphatic endothelial cells in regulating the progression of CH by single-cell transcriptome sequencing. The enrichment of lymphatic endothelial cells in CH and the activation of the VEGF signaling pathway in lymphatic endothelial cells provide some clues to the pathogenesis of CH from the perspective of cell subpopulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11036587PMC
http://dx.doi.org/10.1186/s12920-024-01859-xDOI Listing

Publication Analysis

Top Keywords

lymphatic endothelial
28
endothelial cells
28
vegf signaling
24
signaling pathway
20
fetal cystic
12
cystic hygroma
12
cells
9
single-cell transcriptome
8
transcriptome sequencing
8
cell subsets
8

Similar Publications

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

The liver lymphatic system plays a critical role in maintaining interstitial fluid balance and immune regulation. Efficient lymphatic drainage is essential for liver homeostasis, but its role in liver disease progression remains poorly understood. In cirrhosis, lymphangiogenesis initially compensates for increased lymph production, but impaired lymphatic drainage in advanced stages may lead to complications such as ascites and portal hypertension.

View Article and Find Full Text PDF

Background: Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect.

View Article and Find Full Text PDF

Synergistic effects of mTOR inhibitors with VEGFR3 inhibitors on the interaction between TSC2-mutated cells and lymphatic endothelial cells.

Sci China Life Sci

January 2025

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease affecting the lung, kidney, and lymphatic system with a molecular mechanism of tuberous sclerosis complex 2 (TSC2) mutations. Vascular endothelial growth factor D (VEGF-D), a ligand for vascular endothelial growth factor receptor 3 (VEGFR3), is a diagnostic biomarker of LAM and is associated with lymphatic circulation abnormalities. This study explored the interaction between LAM cells and lymphatic endothelial cells (LECs) and the effects of rapamycin on this interaction, which may help to identify new targets for LAM treatment.

View Article and Find Full Text PDF

The regeneration of endothelial cells (ECs) lining arteries, veins, and large lymphatic vessels plays an important role in vascular pathology. To understand the mechanisms of atherogenesis, it is important to determine what happens during endothelial regeneration. A comparison of these processes in the above-mentioned vessels reveals both similarities and some significant differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!