AI Article Synopsis

Article Abstract

Purpose: The interest in applying and modeling dynamic MRS has recently grown. Two-dimensional modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to one-dimensional (1D) modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches.

Methods: Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multitransient linear-combination modeling (LCM) with 1D-LCM of the average. A total of 2,500 data sets per condition with different noise representations of a 64-transient MRS experiment at six signal-to-noise levels for two separate spin systems (scyllo-inositol and gamma-aminobutyric acid) were analyzed. Additional data sets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by SDs and Cramér-Rao lower bounds (CRLBs).

Results: Amplitude estimates for 1D- and 2D-LCM agreed well and showed a similar level of bias compared with the ground truth. Estimated CRLBs agreed well between both models and with ground-truth CRLBs. For correlated noise, the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM.

Conclusion: Our results indicate that the model performance of 2D multitransient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as a necessary basis for further applications of 2D modeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209799PMC
http://dx.doi.org/10.1002/mrm.30110DOI Listing

Publication Analysis

Top Keywords

uncertainty estimation
12
modeling
8
linear-combination modeling
8
data sets
8
ground truth
8
agreed well
8
estimated crlbs
8
data
5
simultaneous multi-transient
4
multi-transient linear-combination
4

Similar Publications

Background: Emergency departments have high levels of uncertainty, long wait times, resource shortages, overcrowding and a constantly changing environment. Patient experience and patient safety are directly linked, yet levels of patient experience are stagnant. To improve emergency nursing care and patient experience, an emergency nursing framework HIRAID® (History including Infection risk, Red flags, Assessment, Interventions, Diagnostics, communication, and reassessment) was implemented in 29 Australian emergency departments.

View Article and Find Full Text PDF

Revisiting secondary model features for describing the shoulder and lag parameters of microbial inactivation and growth models.

Int J Food Microbiol

January 2025

Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena (ETSIA), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.

The Baranyi and Geeraerd models are two of the most reliable models for the description of, respectively, microbial growth and inactivation. They are defined as a system of differential equations, whose algebraic solution can describe the microbial response during isothermal conditions, especially when combined with suitable secondary models. However, there are still large uncertainties regarding the best functions to use as secondary models for the lag phase duration (λ) and the shoulder length (S).

View Article and Find Full Text PDF

To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution.

View Article and Find Full Text PDF

Aiming at the control challenges faced by unmanned surface vessels (USVs) in complex environments, such as nonlinearities, parameter uncertainties, and environmental perturbations, we propose a non-singular terminal integral sliding mode control strategy based on an extended state observer (ESO). The strategy first employs a third-order linear extended state observer to estimate the total disturbances of the USV system, encompassing both external disturbances and internal nonlinearities. Subsequently, a backstepping sliding mode controller based on the Lyapunov theory is designed to generate the steering torque control commands for the USV.

View Article and Find Full Text PDF

On the Measurement of Laser Lines in 3D Space with Uncertainty Estimation.

Sensors (Basel)

January 2025

InViLab, Department of Electromechanical Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

Laser-based systems, essential in diverse applications, demand accurate geometric calibration to ensure precise performance. The calibration process of the system requires establishing a reliable relationship between input parameters and the corresponding 3D description of the outgoing laser beams. The quality of the calibration depends on the quality of the dataset of measured laser lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!