Background: Skeletal muscle dysfunction is a common extrapulmonary manifestation of chronic obstructive pulmonary disease (COPD). Alterations in skeletal muscle myosin heavy chain expression, with reduced type I and increased type II myosin heavy chain expression, are associated with COPD severity when studied in largely male cohorts. The objectives of this study were (1) to define an abnormal myofibre proportion phenotype in both males and females with COPD and (2) to identify transcripts and transcriptional networks associated with abnormal myofibre proportion in COPD.
Methods: Forty-six participants with COPD were assessed for body composition, strength, endurance and pulmonary function. Skeletal muscle biopsies from the vastus lateralis were assayed for fibre-type distribution and cross-sectional area via immunofluorescence microscopy and RNA-sequenced to generate transcriptome-wide gene expression data. Sex-stratified k-means clustering of type I and IIx/IIax fibre proportions was used to define abnormal myofibre proportion in participants with COPD and contrasted with previously defined criteria. Single transcripts and weighted co-expression network analysis modules were tested for correlation with the abnormal myofibre proportion phenotype.
Results: Abnormal myofibre proportion was defined in males with COPD (n = 29) as <18% type I and/or >22% type IIx/IIax fibres and in females with COPD (n = 17) as <36% type I and/or >12% type IIx/IIax fibres. Half of the participants with COPD were classified as having an abnormal myofibre proportion. Participants with COPD and an abnormal myofibre proportion had lower median handgrip strength (26.1 vs. 34.0 kg, P = 0.022), 6-min walk distance (300 vs. 353 m, P = 0.039) and forced expiratory volume in 1 s-to-forced vital capacity ratio (0.42 vs. 0.48, P = 0.041) compared with participants with COPD and normal myofibre proportions. Twenty-nine transcripts were associated with abnormal myofibre proportions in participants with COPD, with the upregulated NEB, TPM1 and TPM2 genes having the largest fold differences. Co-expression network analysis revealed that two transcript modules were significantly positively associated with the presence of abnormal myofibre proportions. One of these co-expression modules contained genes classically associated with muscle atrophy, as well as transcripts associated with both type I and type II myofibres, and was enriched for genetic loci associated with bone mineral density.
Conclusions: Our findings indicate that there are significant transcriptional alterations associated with abnormal myofibre proportions in participants with COPD. Transcripts canonically associated with both type I and type IIa fibres were enriched in a co-expression network associated with abnormal myofibre proportion, suggesting altered transcriptional regulation across multiple fibre types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154789 | PMC |
http://dx.doi.org/10.1002/jcsm.13473 | DOI Listing |
Open Biol
October 2024
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5.
Lipids Health Dis
August 2024
Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia (UBC), 217-2176 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
Background: Dysferlin-deficient limb-girdle muscular dystrophy type 2B (Dysf) mice are notorious for their mild phenotype. Raising plasma total cholesterol (CHOL) via apolipoprotein E (ApoE) knockout (KO) drastically exacerbates muscle wasting in Dysf mice. However, dysferlinopathic patients have abnormally reduced plasma high-density lipoprotein cholesterol (HDL-C) levels.
View Article and Find Full Text PDFBrain
December 2024
The John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne NHS Trust, Newcastle Upon Tyne, NE13BZ, UK.
Equine Vet J
July 2024
Department of Clinical Sciences and Services, Royal Veterinary College, London, UK.
Background: Equine exercise-associated myopathies are prevalent, clinically heterogeneous, generally idiopathic disorders characterised by episodes of myofibre damage that occur in association with exercise. Episodes are intermittent and vary within and between affected horses and across breeds. The aetiopathogenesis is often unclear; there might be multiple causes.
View Article and Find Full Text PDFMicrovasc Res
September 2024
Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
Vincristine (VCR), a vinca alkaloid with anti-tumor and anti-oxidant properties, is acclaimed to possess cardioprotective action. However, the molecular mechanism underlying this protective effect remains unknown. This study investigated the effects of VCR on isoprenaline (ISO), a beta-adrenergic receptor agonist, induced cardiac hypertrophy in male Wistar rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!