Breast cancer (BRCA) is currently the most commonly diagnosed malignancy in women worldwide. Previous studies have demonstrated that mitophagy is important for the prevention and treatment of BRCA. However, few studies have focused on the individual mitochondrial autophagy-related genes (MARG) in human cancers. Based on bioinformatics analyses, TOMM40 was identified as a prognostic DEMARG (PDEMARGs); Kaplan-Meier (KM) survival analysis also indicates that TOMM40 can be useful as a prognostic indicator in BRCAs, with patients in the high expression group having a poorer prognosis. For 20 distinct cancer kinds, there were appreciable differences in the expression of TOMM40 between tumor and normal tissues; in addition, in 21 different cancer types, there were associations between the expression profile of TOMM40 and patient prognosis. Gene Set Enrichment Analysis (GSEA), functional enrichment analysis, and immunological and drug sensitivity analyses of TOMM40 have indicated its biological significance in pan-cancers. Knockdown of TOMM40 in MDA-MB-231 cells inhibited their proliferation, migration, and invasiveness. In conclusion, we found that TOMM40 has prognostic value in 21 cancers, including breast cancer, by bioinformatics analysis. Based on immune correlation analysis, TOMM40 may also be a potential immunotherapeutic target for the treatment of BRCA. Therefore, our results may provide researchers to further explore the role of MARGs, especially TOMM40, in the developmental process of breast cancer, which may provide new directions and targets for the improvement of prognosis of breast cancer patients and their treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10528-024-10794-6 | DOI Listing |
Breast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.
View Article and Find Full Text PDFBiomark Res
December 2024
Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans.
View Article and Find Full Text PDFBMC Cancer
December 2024
Department of Plastic Surgery, University College London, London, UK.
Introduction: Breast cancer is the leading cause of cancer amongst women in the United Kingdom, with implant-based reconstruction (IBR) using Acellular Dermal Matrices (ADM) gaining popularity for post-mastectomy procedures. This study compares outcomes of different ADMs that are commonly used in women undergoing IBR, this was short and long-term complications.
Methods: A systematic search of MEDLINE, Embase, CENTRAL, and CDSR databases was performed according to the PRISMA guidelines, focusing on women undergoing IBR with FlexHD, AlloDerm, Bovine, or Porcine ADMs.
Cell Mol Life Sci
December 2024
Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!