Nanometer-sized diamonds (NDs) containing nitrogen vacancy centers have garnered significant attention as potential quantum sensors for reading various types of physicochemical information and However, NDs intrinsically aggregate when placed in biological environments, hampering their sensing capacities. To address this issue, the grafting of hydrophilic polymers onto the surface of NDs has been demonstrated considering their excellent ability to prevent protein adsorption. To this end, crowding of the grafted chains plays a crucial role because it is directly associated with the antiadsorption effect of proteins; however, its quantitative evaluation has not been reported previously. In this study, we graft poly(ethylene glycol) (PEG) with various molecular weights onto NDs, determine their crowding using a gas adsorption technique, and disclose the cross-correlation between the pH in the grafting reaction, crowding density, molecular weight, and the prevention effect on protein adsorption. PEG-grafted NDs exhibit a pronounced effect on the prevention of lung accumulation after intravenous injection in mice. PEG crowding was compared to that calculated by using a diameter determined by dynamic light scattering (DLS) assuming a sphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c03988 | DOI Listing |
Nat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFChemSusChem
January 2025
Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.
Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.
View Article and Find Full Text PDFBiomater Sci
January 2025
Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
Nature-inspired superhydrophobic materials have attracted considerable interest in blood-contacting biomedical applications due to their remarkable water-repellent and self-cleaning properties. However, the interaction mechanism between blood components and superhydrophobic surfaces remains unclear. To explore the effect of trapped air on platelet adhesion, we designed four distinct hydrophobic titanium dioxide (TiO) nanostructures with different fractions of trapped air.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
Peptidoglycan (PGN) is the primary component of bacterial cell walls, consisting of linear glycan chains formed by alternating linkages of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) through glycosidic bonds. It exhibits biological activity in various aspects, making it a biologically significant macromolecule with extensive industrial application. This review aims to explore the latest research advancements in the extraction techniques, structural characterization, functions, and applications of PGN.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!