The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), β-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, β-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2024.148936 | DOI Listing |
Blood Adv
January 2025
Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
Interferon alpha (IFNa) is approved for the therapy of patients (pts) with polycythemia vera (PV), a subtype of myeloproliferative neoplasms (MPN). Some pts achieve molecular responses (MR), but clonal factors sensitizing for MR remain elusive. We integrated colony formation and differentiation assays with single-cell RNA seq and genotyping in PV-derived cells vs.
View Article and Find Full Text PDFBlood Adv
January 2025
Univeristy of Alabama at Birmingham, Birmingham, Alabama, United States.
Hepatosplenic T-cell lymphoma (HSTCL) is an aggressive mature T-cell lymphoma characterized by significant hepatosplenomegaly, bone marrow involvement, and minimal or no lymphadenopathy. Primarily affecting young adults, it is exceptionally rare in children and adolescents. This makes diagnosis and treatment particularly challenging for pathologists and pediatric oncologists.
View Article and Find Full Text PDFPLoS Biol
January 2025
Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.
Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!