Patient-specific temperature distribution prediction in laser interstitial thermal therapy: single-irradiation data-driven method.

Phys Med Biol

Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China.

Published: May 2024

Laser interstitial thermal therapy (LITT) is popular for treating brain tumours and epilepsy. The strict control of tissue thermal damage extent is crucial for LITT. Temperature prediction is useful for predicting thermal damage extent. Accurately predictingbrain tissue temperature is challenging due to the temperature dependence and the individual variations in tissue properties. Considering these factors is essential for improving the temperature prediction accuracy.. To present a method for predicting patient-specific tissue temperature distribution within a target lesion area in the brain during LITT.. A magnetic resonance temperature imaging (MRTI) data-driven estimation model was constructed and combined with a modified Pennes bioheat transfer equation (PBHE) to predict patient-specific temperature distribution. In the PBHE for temperature prediction, the individual specificity and temperature dependence of thermal tissue properties and blood perfusion, as well as the individual specificity of optical tissue properties were considered. Only MRTI data during one laser irradiation were required in the method. This enables the prediction of patient-specific temperature distribution and the resulting thermal damage region for subsequent ablations.. Patient-specific temperature prediction was evaluated based on clinical data acquired during LITT in the brain, using intraoperative MRTI data as the reference standard. Our method significantly improved the prediction performance of temperature distribution and thermal damage region. The average root mean square error was decreased by 69.54%, the average intraclass correlation coefficient was increased by 37.5%, the average Dice similarity coefficient was increased by 43.14% for thermal damage region prediction.. The proposed method can predict temperature distribution and thermal damage region at an individual patient level during LITT, providing a promising approach to assist in patient-specific treatment planning for LITT in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad4194DOI Listing

Publication Analysis

Top Keywords

temperature distribution
24
thermal damage
24
patient-specific temperature
16
temperature prediction
16
damage region
16
temperature
13
tissue properties
12
distribution thermal
12
thermal
9
prediction
8

Similar Publications

Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.

Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.

View Article and Find Full Text PDF

Global warming has threatened all-rounded hierarchical biosphere by reconstructing eco-structure and bringing biodiversity variations. Pacific white shrimp, a successful model of worldwide utilizing marine ectothermic resources, is facing huge losses due to multiple diseases relevant to intestinal microbiota (IM) dysbiosis during temperature fluctuation. However, how warming mediates shrimp health remains poorly understood.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of the gynogenetic large-scale loach (Paramisgurnus dabryanus).

Sci Data

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.

The large-scale loach (Paramisgurnus dabryanus; Cypriniformes: Cobitidae) is primarily distributed in East Asia. It is an important economic fish species characterized by fast growth, temperature-dependent sex determination and the ability to breathe air. Currently, molecular mechanism studies related to some aspects such as sex determination, toxicology, feed nutrition, growth and genetic evolution have been conducted.

View Article and Find Full Text PDF

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!