Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cassia (Family: Fabaceae) species are a large group of flowering plants rich in bioactive anthraquinone and flavonoids used in botanical supplements and nutraceuticals.
Objective: A simple and reliable high-performance liquid chromatography-photodiode array (HPLC-PDA) method was developed and validated for separating and quantifying 13 anthraquinone and flavonoids. These compounds were further confirmed using an LC-based electrospray ionization mass spectrometry (ESI-MS/MS) method in the leaves and flowers of selected Cassia species. A simple and rapid HPTLC method was developed for chemical fingerprint analysis of all Cassia species.
Method: All 13 compounds were chromatographically separated on a Zorbax TC18 (4.6 × 250, 5 μm particle size) analytical column, and 0.1% formic acid and acetonitrile as elution solvents at a flow rate of 0.8 mL/min with detection at 259 nm. For HPTLC fingerprinting, the mobile phase compositions of toluene, ethyl acetate, and formic acid (5.5:4.2:0.6, v/v/v) were optimized to separate and identify all compounds using silica gel 60F254 aluminum plates.
Results: The validation data for the developed HPLC-PDA method for 13 compounds showed good linearity (r2 >0.99) with a sensitive LOD (0.082-1.969 μg/mL), LOQ (0.250-5.967 μg/mL), and excellent recoveries (85.22-100.32%). The quantification results were found to be precise and accurate (<5.0% and relative error), -0.77-0.44 with ESI-MS/MS confirmation in the Cassia samples. The novel HPTLC method was excellent separation for 13 compounds, with Rf values ranging between 0.12 and 0.61.
Conclusions: The developed HPLC-PDA method was simple and precise and could separate and quantify anthraquinones and flavonoids along with confirmation, using a novel LC-based ESI-MS/MS. The HPTLC method was found to be simple and precise, with excellent separation capabilities for these compounds.
Highlights: This novel multiplatform approach successfully identified and quantified 13 compounds simultaneously using an integration of data strategy in seven medicinally important Cassia species' leaves and flowers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jaoacint/qsae028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!