Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants that bioaccumulate in the environment. The gut microbiome is an important regulator of liver functions including xenobiotic biotransformation and immune regulation. We recently showed that neonatal exposure to polybrominated diphenyl ether-99 (BDE-99), a human breast milk-enriched PBDE congener, up-regulated proinflammation-related and down-regulated drug metabolism-related genes predominantly in males in young adulthood. However, the persistence of this dysregulation into late adulthood, differential impact among hepatic cell types, and the involvement of the gut microbiome from neonatal BDE-99 exposure remain unknown. To address these knowledge gaps, male C57BL/6 mouse pups were orally exposed to corn oil (10 ml/kg) or BDE-99 (57 mg/kg) once daily from postnatal days 2-4. At 15 months of age, neonatal BDE-99 exposure down-regulated xenobiotic and lipid-metabolizing enzymes and up-regulated genes involved in microbial influx in hepatocytes. Neonatal BDE-99 exposure also increased the hepatic proportion of neutrophils and led to a predicted increase of macrophage migration inhibitory factor signaling. This was associated with decreased intestinal tight junction protein (Tjp) transcripts, altered gut environment, and dysregulation of inflammation-related metabolites. ScRNA-seq using germ-free (GF) mice demonstrated the necessity of a normal gut microbiome in maintaining hepatic immune tolerance. Microbiota transplant to GF mice using large intestinal microbiome from adults neonatally exposed to BDE-99 down-regulated Tjp transcripts and up-regulated several cytokines in large intestine. In conclusion, neonatal BDE-99 exposure reprogrammed cell type-specific gene expression and cell-cell communication in liver towards proinflammation, and this may be partly due to the dysregulated gut environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199921PMC
http://dx.doi.org/10.1093/toxsci/kfae047DOI Listing

Publication Analysis

Top Keywords

bde-99 exposure
20
neonatal bde-99
16
gut microbiome
12
bde-99
8
exposure reprogrammed
8
late adulthood
8
polybrominated diphenyl
8
tjp transcripts
8
gut environment
8
exposure
6

Similar Publications

Pet dogs offer valuable models for studying environmental impacts on human health due to shared environments and a shorter latency period for cancer development. We assessed environmental chemical exposures in a case-control study involving dogs at high risk of urothelial carcinoma, identified by a BRAF V595E mutation in urinary epithelial cells. Cases ( = 25) exhibited low-level BRAF mutations, while controls ( = 76) were matched dogs without the mutation.

View Article and Find Full Text PDF

E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.

View Article and Find Full Text PDF
Article Synopsis
  • PBDEs are synthetic compounds used as flame retardants, raising health concerns due to their toxicity and accumulation in the environment, with food and dust as main exposure sources.
  • The study analyzed dust from 31 cars and 14 airplanes for specific PBDE types, estimating exposure for infants, toddlers, and adults, using gas chromatography for detection.
  • Results showed BDE-209 was most prevalent, but overall exposure levels were low, with all hazard quotients below 1, indicating no significant health risk from dust ingestion for the populations studied.
View Article and Find Full Text PDF

For many years, polybrominated diphenyl ethers (PBDEs) were used as flame retardants in a large number of consumer products. Even though international law meanwhile prohibits the production and usage of PBDEs, these persistent and bioaccumulative chemicals still leak into the environment, and are frequently detected in wildlife and humans. Population-based studies reveal positive correlations between human PBDE exposure and various adverse health effects, emphasizing that a better understanding of the mode of action of these polybrominated chemicals is urgently needed.

View Article and Find Full Text PDF

In utero exposure to polybrominated diphenyl ethers (PBDEs) is linked to adverse pregnancy and fetal health outcomes, including altered thyroid hormone (TH) levels. Despite their phase out, PBDEs are still commonly detected in newborn cord blood. While PBDEs can cross the placenta, few studies have separately assessed PBDEs or THs in the maternal and fetal placental tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!