Investigations of membrane protein interactions in cells using fluorescence microscopy.

Curr Opin Struct Biol

Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA. Electronic address:

Published: June 2024

AI Article Synopsis

  • The interactions between membrane proteins play a crucial role in cellular functions.
  • Recent advancements in fluorescence techniques have improved our ability to study these interactions.
  • New biophysical measurements provide valuable insights into the spatial distribution, association states, and stability of membrane proteins, enhancing our understanding of biological processes.

Article Abstract

The interactions between proteins in membranes govern many cellular functions. Our ability to probe for such interactions has greatly evolved in recent years due to the introduction of new fluorescence techniques. As a result, we currently have a choice of methods that can be used to assess the spatial distribution of a membrane protein, its association state, and the thermodynamic stability of the oligomers in the native milieu. These biophysical measurements have revealed new insights into important biological processes in cellular membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141325PMC
http://dx.doi.org/10.1016/j.sbi.2024.102816DOI Listing

Publication Analysis

Top Keywords

membrane protein
8
investigations membrane
4
protein interactions
4
interactions cells
4
cells fluorescence
4
fluorescence microscopy
4
microscopy interactions
4
interactions proteins
4
proteins membranes
4
membranes govern
4

Similar Publications

Background: Insulin resistance often occurs in patients with chronic kidney disease (CKD) owing to mineral and bone metabolism disorders. Fibroblast growth factor (FGF)-23 and soluble klotho (s-KL) play crucial roles in linking CKD with mineral and bone metabolism.

Objective: This study aimed to examine the relationship between insulin resistance and FGF-23 and s-KL in patients with non-diabetic pre-dialysis patients with CKD.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!