Till date, humankind has mainly acknowledged the quenching phenomenon of graphene oxide (GO). From a fundamental science standpoint, the unique and dynamic prospects of graphene oxide have been showcased in a brief but concise manner. Worldwide research studies have proven that graphene oxide has tremendous potentiality in showcasing breakthroughs in the fields of both basic science and innovative applications. In this Perspective, the fact that, apart from the very common fluorescence quenching phenomenon, graphene oxide can also enhance fluorescence intensity, promote prototropism, demonstrate aggregation-induced emission, and itself exhibit photoluminescence properties in nonaqueous media has been highlighted. It draws attention to the fact regarding unveiling the unknown properties of graphene oxide that might be useful to scientific communities in upcoming years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c00337 | DOI Listing |
Small
January 2025
College of Material Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
Single-atom catalysts (SACs) with high activity and efficient atom utilization for oxygen reduction reactions (ORRs) are imperative for rechargeable Zinc-air batteries (ZABs). However, it is still a prominent challenge to construct a noble-metal-free SAC with low cost but high efficiency. Herein, a novel nitrogen-doped graphene (NrGO) based SAC, immobilized with atomically dispersed single cobalt (Co) atoms (Co-NrGO-SAC), is reported for ORRs.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland.
l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.
View Article and Find Full Text PDFPLoS One
January 2025
Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!