Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the ex vivo expansion of umbilical cord-derived mesenchymal stem cells (hUCMSCs) in a stirred tank bioreactor, the formation of cell-microcarrier aggregates significantly affects cell proliferation and physiological activity, making it difficult to meet the quantity and quality requirements for in vitro research and clinical applications. In this study, computational fluid dynamic (CFD) simulations were used to investigate the effect of an impeller structure in a commercial spinner flask on flow field structure, aggregate formation, and cellular physiological activity. By designing a modified impeller, the aggregate size was reduced, which promoted cell proliferation and stemness maintenance. This study showed that increasing the stirring speed reduced the size of hUCMSC-microcarrier aggregates with the original impeller. However, it also inhibited cell proliferation, decreased activity, and led to spontaneous differentiation. Compared to low stirring speeds, high stirring speeds did not alter the radial flow characteristics and vortex distribution of the flow field, but did generate higher shear rates. The new impeller's design changed the flow field from radial to axial. The use of the novel impeller with an increased axial pumping rate (Q) at a similar shear rate compared to the original impeller resulted in a 43.7% reduction in aggregate size, a 37.4% increase in cell density, and a better preservation of the expression of stemness markers (SOX2, OCT4 and NANOG). Increasing the Q was a key factor in promoting aggregate suspension and size reduction. The results of this study have significant implications for the design of reactors, the optimisation of operating parameters, and the regulation of cellular physiological activity during MSC expansion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992254 | PMC |
http://dx.doi.org/10.1186/s40643-023-00707-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!