The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11076402 | PMC |
http://dx.doi.org/10.1007/s12012-024-09852-7 | DOI Listing |
ACS Pharmacol Transl Sci
December 2024
Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
In patients with myocardial infarction, one of the complications that may occur after revascularization is myocardial ischemia-reperfusion injury (IRI), characterized by a depleted myocardial oxygen supply and absence of blood flow recovery after reperfusion, leading to expansion of myocardial infarction, poor healing of myocardial infarction and reversal of left ventricular remodeling, and an increase in the risk for major adverse cardiovascular events such as heart failure, arrhythmia, and cardiac cell death. As a risk factor for cardiovascular disease, diabetes mellitus increases myocardial susceptibility to myocardial IRI through various mechanisms, increases acute myocardial infarction and myocardial IRI incidence, decreases myocardial responsiveness to protective strategies and efficacy of myocardial IRI protective methods, and increases diabetes mellitus mortality through myocardial infarction. This Review summarizes the mechanisms, existing therapeutic strategies, and potential therapeutic targets of myocardial IRI in diabetic states, which has very compelling clinical significance.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
Ischemia-reperfusion injury (IRI) is a common and clinically significant form of tissue damage encountered in medical practice. This pathological process has been thoroughly investigated across a variety of clinical settings, including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Intestinal IRI, in particular, is increasingly recognized as a significant clinical entity due to marked changes in the gut microbiota and their metabolic products, often described as the body's "second genome.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2024
Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Coronary heart disease is a major global health threat, with acute myocardial ischemia-reperfusion injury (IRI) being a major contributor to myocardial damage following an ischemic event. IRI occurs when blood flow to ischemic tissues is restored and exacerbates the cellular damage caused by ischemia/hypoxia. Although animal studies investigating IRI have provided valuable insights, their translation into clinical outcomes has been limited, and translation into medical practice remains cumbersome.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Preclinical Department, Faculty of Medicine, "Lucian Blaga" University of Sibiu, 550169 Sibiu, Romania.
Unlabelled: Capecitabine (CAP) is one of the most commonly prescribed fluoropyrimidines in oncology, especially in the treatment of colon cancer. Cardiac toxicity is a severe and potentially lethal adverse drug reaction (ADR) against fluoropyrimidines. Cardiac ADRs, such as myocardial infarction (MI), heart failure (HF), arrhythmias, and a number of cardiomyopathies, are reported for these molecules.
View Article and Find Full Text PDFMinerva Cardiol Angiol
November 2024
Guangxi Key Laboratory of Basic Medical Research Support for Immune-related Diseases, Baise, Guangxi, China -
Background: Acute myocardial infarction (AMI) is a major cause of death in cardiovascular patients. SOCS3's protective role in cardiac I/R-I is being explored, and miRNAs, particularly miRNA-148a-3p, are suspected to target SOCS3. To elucidate the role of miRNA-148a-3p targeting lipid metabolism gene SOCS3 in cardiac ischemia-reperfusion injury (I/R-I) in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!