Alkaline protease is widely used in the food, detergent, and pharmaceutical industries because of its comparatively great hydrolysis ability and alkali tolerance. To improve the ability of the recombinant Bacillus licheniformis to produce alkaline protease, single-factor experiments and response surface methodology (RSM) were utilized to determine and develop optimal culture conditions. The results showed that three factors (corn starch content, soybean meal content, and initial medium pH) had significant effects on alkaline protease production (P < 0.05), as determined through the Plackett‒Burman design. The maximum enzyme activity was observed with an optimal medium composition by central composite design (CCD): corn starch, 92.3 g/L; soybean meal, 35.8 g/L; and initial medium pH, 9.58. Under these optimum conditions, the alkaline protease activity of strain BL10::aprE was 15,435.1 U/mL, 82% higher than that in the initial fermentation medium. To further investigate the application of the optimum fermentation medium, the overexpressed strain BL10::aprE/pHYaprE was cultured using the optimized medium to achieve an enzyme activity of 39,233.6 U/mL. The present study achieved the highest enzyme activity of alkaline protease by B. licheniformis at the shake-flask fermentation level, which has important application value for large-scale production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991860 | PMC |
http://dx.doi.org/10.1186/s40643-023-00641-8 | DOI Listing |
Int J Biol Macromol
January 2025
Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru 575018, Karnataka, India. Electronic address:
Bacteriophages, the most abundant biological agents targeting bacteria, offer a promising alternative to antibiotics for combating multi-drug resistant pathogens like Acinetobacter baumannii. However, the rapid development of bacteriophage resistance poses a significant challenge. This study highlights the contribution of outer membrane proteins (OMPs) in the emergence of bacteriophage resistance in A.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey. Electronic address:
Recycling of protein-rich environmental wastes and obtaining more valuable products from these recycled products is a topic of interest for researchers. This study aims to produce, purify, and characterize the physicochemical and structural properties of the protease enzyme produced from Brevibacillus agri SAR25 using salmon fish waste as substrate and also to evaluate the effect of protease on the chicken feather, enzyme-ligand interactions, and active site surface area. The production of protease was optimum on 50 g/L fish waste, pH 8, 40 °C, 96 h, and 150 rpm.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
J Fungi (Basel)
December 2024
College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China.
is a tasty and low-calorie mushroom containing abundant high-quality protein. This study aims to improve the digestibility of protein (PEP) and hence to facilitate its development as a healthy alternative protein. The extracted PEP was pretreated with 1000-5000 U of papain, neutral protease and alkaline protease.
View Article and Find Full Text PDFMar Drugs
November 2024
Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China.
Crustins are a family of antimicrobial peptides (AMPs) that play a pivotal role in the innate immune system of crustaceans. The discovery of novel AMPs from natural sources is crucial for expanding our current database of these peptides. Here, we identified and characterized a novel member of the crustin family, named Crus-SWD1, derived from .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!