The cellulase cocktail of marine Aspergillus niger exhibited salt-tolerant and thermostable properties, which is of great potential in industrial application. In order to excavate the single tolerant cellulase components from complex cellulase cocktail, constitutive homologous expression was employed for direct obtainment of the endoglucanase (AnEGL). Enzymatic property study revealed that AnEGL exhibited a property of salt tolerance and a strong thermostability in high salinity environment. Significantly, its activity increased to 129% and the half-life at 65 °C increased to 27.7-fold with the presence of 4.5 M NaCl. Molecular dynamics simulation revealed that Na and Cl could form salt bridges with charged residues, and then influenced the activity of loops and the stability of substrate binding pocket, which accounted for the salt tolerance and thermostability. Further, site-specific mutagenesis study proved that the residues Asp95 and Asp99 in the pocket were of great concern for the tolerant properties. The salt-tolerant and thermostable AnEGL was of great value in lignocellulosic utilization and the conjectural mechanisms were of referential significance for other tolerant enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991132 | PMC |
http://dx.doi.org/10.1186/s40643-022-00533-3 | DOI Listing |
J Agric Food Chem
December 2024
Key Laboratory of Industrial Biotechnology of the Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
In addressing the challenges posed by extended fermentation cycles and high-salt conditions in high-salt liquid-state fermentation soy sauce (HLFSS) production, a high-throughput screening method was devised to identify thermally stable l-glutaminase mutants. This study yielded mutants A146D and A51D, exhibiting enhanced thermal stability. Computer-aided analysis revealed that these mutations introduced additional forces, compacting the protein structure and lowering the Gibbs free energy, thereby improving thermostability.
View Article and Find Full Text PDFBiomolecules
September 2024
School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
This study identified a salt-tolerant GH11 xylanase, Xyn, which was isolated from a soil bacterium sp. SC1 and can resist as high as 4 M NaCl. After rational design and high-throughput screening of site-directed mutant libraries, a double mutant W6F/Q7H with a 244% increase in catalytic activity and a 10 °C increment in optimal temperature was obtained.
View Article and Find Full Text PDFSci Rep
February 2024
Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
Realising a fully circular bioeconomy requires the valorisation of lignocellulosic biomass. Cellulose is the most attractive component of lignocellulose but depolymerisation is inefficient, expensive and resource intensive requiring substantial volumes of potable water. Seawater is an attractive prospective replacement, however seawater tolerant enzymes are required for the development of seawater-based biorefineries.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2023
Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, FSNV, Université des Frères Mentouri, Constantine 1, Constantine, 25017, Algeria.
β-mannanase catalyzes the hydrolysis of mannans β-1,4-mannosidic linkages to produce industrially relevant oligosaccharides. These enzymes have numerous important applications in the detergent, food, and feed industries, particularly those that are resistant to harsh environmental conditions such as salts and heat. While, moderately salt-tolerant β-mannanases are already reported, existence of a high halotolerant β-mannanase is still elusive.
View Article and Find Full Text PDFJ Biomol Struct Dyn
September 2024
Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus.
CRISPR has revolutionized the field of genome editing in life sciences by serving as a versatile and state-of-the-art tool. Cas12f1 is a small nuclease of the bacterial immunity CRISPR system with an ideal size for cellular delivery, in contrast to CRISPR-associated (Cas) proteins like Cas9 or Cas12. However, Cas12f1 works best at low salt concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!