Enzymatic degradation of synthetic dyes holds an immense promise for addressing the environmental concerns associated with the textile and dye industries. This study aimed to isolate bacteria capable of producing laccase enzymes from an anthropogenic environment. Subsequently, viability of utilizing cost-effective agricultural residues as substrates for laccase production was assessed. Response Surface Methodology (RSM) and the One Variable at a Time (OVAT) approach was pursued for the optimization of laccase production, followed by pH and temperature stability, dye degradation and decolorization experiments, toxicological studies on the degraded dye metabolites. In results, laccase-producing bacterial strain was identified as Stenotrophomonas maltophilia strain E1 (S. maltophilia). Among variety of substrates, coconut husk exhibited optimal efficacy. In a statistical optimization study, it was found that S. maltophilia was capable of producing laccase 51.38 IU/mL, i.e., three times higher than the amount of laccase produced by unoptimized medium (16.7 IU/mL), and the enzyme activity was found to be steady at an acidic pH, and a mesophilic temperature range. The laccase obtained from S. maltophilia E1 demonstrated proficient dye decolorization capabilities, achieving a notable 92.1% reduction in Malachite green dye coloration at a concentration of 500 ppm. Gas chromatography-mass spectrometry (GC-MS) analysis of the decolorized derivatives of Malachite green revealed a conversion into a distinct compounds. Moreover, after undergoing laccase treatment, Malachite green exhibited decreased phytotoxic effects on Oryza sativa, pointing to enzymatic detoxification. Collectively, insights gained from the present study will contribute to the development of efficient enzymatic approaches for addressing the environmental pollution caused by synthetic dyes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991366 | PMC |
http://dx.doi.org/10.1186/s40643-023-00703-x | DOI Listing |
Pflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Constructor University Bremen gGmbH, School of Science, Campus Ring 1, 28759, Bremen, GERMANY.
Compartmentalized models with coupled catalytic networks are considered as "protocells" in the context of research related to the origin of life. To model the kinetics of a simple cellular uptake-metabolism process, we use a compartmentalized protocell system that combines liposome-encapsulated intravesicular reporter pairs with co-encapsulated enzymes to monitor the membrane transport of a substrate (analyte uptake) and its subsequent enzymatic reaction inside the vesicles (metabolism to the product). The intravesicular chemosensing ensembles consist of the macrocycles cucurbit[7]uril or p-sulfonatocalix[4]arene and matching fluorescent dyes to set up suitable reporter pairs.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
Contamination of water resources by artificial coloring agents and the increasing incidence of bacterial illnesses are two significant environmental and public health issues that are getting worse day by day. Traditional treatment techniques frequently fail to address these problems adequately in a sustainable and environmental friendly way. In response, our study presents a novel photocatalyst that demonstrates superior photodegradation capability and antibacterial qualities in catering the above issues.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia.
Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!